Insights into the QCD Phase Diagram from Nambu–Jona-Lasinio Type Models

Mahammad Sabir Ali

National Institute of Science Education and Research

India-JINR Workshop

November 12, 2025

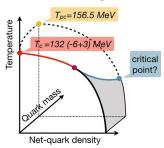
Introduction

• With two massless quarks, QCD has global chiral symmetry $SU(2)_V \times SU(2)_A \times U(1)_V$

 Due to the non-abelian nature of QCD, the interaction strength increases at low energy, resulting in the spontaneous breaking of the chiral symmetry.

- Residual symmetry: $SU(2)_V \times U(1)_V$
- With physical quark masses, the crossover temperature is $T_{co}=156.5\,$ MeV

Phase Diagram



QCD at low energy

- At low energies, the interaction strength becomes very large due to the non-abelian nature. This forbids one to do analytical calculations.
- To study this low-energy regime, one can simulate QCD on the lattice, which is costly and time-consuming.
- Lattice QDC suffers a *sign* problem while dealing with nonzero chemical potential.
- Simplified effective QCD models governed by QCD symmetries are one of the most used analytical methods to explore the low energy regime.

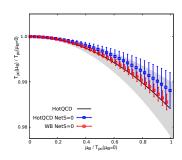
$T - \mu_B$ phase diagram from LQCD

 To compare between different methods, one parametrized the phase line as

$$\frac{T_{pc}(\mu_X)}{T_{pc}(0)} = 1 - \kappa_2^X \left(\frac{\mu_X}{T_{pc}(0)}\right)^2 - \kappa_4^X \left(\frac{\mu_X}{T_{pc}(0)}\right)^4.$$

• The chiral transition line in the $T-\mu_B$ plane calculated in LQCD[A. Bazavov et al. (HotQCD), 2019; S.

Borsanvi et. al., 2020l



2-flavor NJL model

The NJL Lagrangian [Y. Nambu and G. Jona-Lasinio, 1961; M. Frank, M Buballa, M. Oertel, 2003]

$$\begin{split} \mathcal{L}_{\text{NJL}} &= \mathcal{L}_0 + \mathcal{L}_{\text{int}} \\ &= \bar{\psi} \left(i \partial \!\!\!/ + \mu \gamma^0 - m \right) \psi + G \left\{ (\bar{\psi} \psi)^2 + (\bar{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right\} \end{split}$$

- ullet In the chiral limit (m=0), the Lagrangian \mathcal{L}_{NJL} is symmetric under $SU(2)_V imes SU(2)_A imes U(1)_V$
- Within mean-field approximation, the Lagrangian

$$\mathcal{L}_{\mathsf{MFA}} = \bar{\psi} \left(i \partial \!\!\!/ + \mu \gamma^0 - \mathit{M} \right) \psi - \mathit{G} \langle \bar{\psi} \psi \rangle^2$$

with
$$M=m-2G\langle ar{\psi}\psi
angle =m-2G\sigma$$

ullet In the symmetry-broken scenario $\langle ar{\psi} \psi
angle$ acquire nonzero value.

Free Energy

Wick rotation

$$t \rightarrow -ix_4$$
 and $\gamma_0 \rightarrow i\gamma_4 \implies q_0 \rightarrow iq_4$

Matsubara formalism to introduce temperature

$$\int \frac{dq_4}{2\pi} f(q_4) = T \sum_{n=-\infty}^{\infty} f(\omega_n)$$

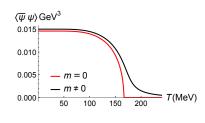
with $\omega_n = (2n+1)\pi T$ for fermions.

The free energy becomes

$$\Omega = G\sigma^2 - \mathcal{N} \int \frac{d^3p}{(2\pi)^3} \frac{E_p}{2} - \mathcal{N}T \int \frac{d^3q}{(2\pi)^3} \left\{ \ln\left[1 + e^{-(E_p - \mu)/T}\right] + \ln\left[1 + e^{-(E_p + \mu)/T}\right] \right\}$$

Phase transition and crossover

- In the chiral limit, this symmetry breaking and restoration at high temperature is connected via second-order phase transition.
- At the transition temperature (T_0), the condensate ($\langle \bar{\psi}\psi \rangle$) becomes zero.
- With nonzero current quark masses, this second-order phase transition becomes a crossover.
- And the crossover temperature (T_{CO}) is the temperature at which the rate of change of condensate is maximum.



Curvature in Chiral Limit (2 Flavor)

• With m = 0, the grand canonical potential for a 2-flavor NJL model can be expanded as

$$\Omega(\sigma, T, \mu) = \alpha_0(T, \mu) + \alpha_2(T, \mu) \sigma^2 + \alpha_4(T, \mu) \sigma^4 + \alpha_6(T, \mu) \sigma^6 + \dots$$

The second-order phase transition line can be obtained by [S. Gupta and R. Sharma, 2018]

$$\alpha_2(T,\mu) = -G' + \frac{T^2}{8\pi^2} \int \rho^2 d\rho \left[\frac{1}{(1 + e^{(\rho - \tilde{\mu})})\rho} + \frac{1}{(1 + e^{(\rho + \tilde{\mu})})\rho} \right]$$
$$= -G' + \frac{1}{48} \left(T^2 + \frac{3}{\pi^2} \mu^2 \right) = 0.$$

• The curvature coefficients [S. Gupta and R. Sharma, 2018]

$$\kappa_2^B = 0.01689$$
 $\kappa_4^B = 0.00014$

3-flavor NJL model

The Lagrangian

$$egin{aligned} \mathcal{L}_{\mathsf{NJL}} &= ar{\psi} \left(i \gamma_{\mu} \partial^{\mu} - \hat{m}
ight) \psi + \hat{\mu} \psi^{\dagger} \psi + \mathcal{L}_{\mathsf{S}} + \mathcal{L}_{\mathsf{D}}, \ \\ \mathcal{L}_{\mathsf{S}} &= \mathit{G}_{s} \sum_{a=0}^{8} \left[\left(ar{\psi} \lambda_{a} \psi
ight)^{2} + \left(ar{\psi} \, i \gamma_{5} \lambda_{a} \psi
ight)^{2}
ight], \end{aligned}$$

$$\mathcal{L}_{\mathsf{S}} = \mathsf{G}_{\mathsf{s}} \sum_{\mathsf{a}=0} \left[(\psi \lambda_{\mathsf{a}} \psi)^{\dagger} + (\psi F_{\mathsf{j}} \lambda_{\mathsf{a}} \psi)^{\dagger} \right],$$

$$\mathcal{L}_{\mathsf{D}} = -\mathsf{G}_{d} \left[\det \bar{\psi}_{i} (1 - \gamma_{\mathsf{5}}) \psi_{j} + \det \bar{\psi}_{i} (1 + \gamma_{\mathsf{5}}) \psi_{j} \right].$$

Under meanfield approximation

$$\mathcal{L}_{\mathsf{MFA}} = \bar{\psi} \left(i \gamma_{\mu} \partial^{\mu} + \hat{\mu} \gamma_{0} - \hat{M} \right) \psi - 2 G_{s} \sum_{i} \sigma_{i}^{2} + 4 G_{d} \prod_{i} \sigma_{i}$$

• The constituent quark masses

$$M_i = m_i - 4G_s\sigma_i + 2G_d\epsilon_{ijk}\sigma_j\sigma_k$$

3-flavor NJL model

The free energy

$$\Omega(\sigma_i, T, \mu) = \Omega_{\mathsf{MF}}(\sigma_i) + \Omega_{\mathsf{Vac}}(\sigma_i) + \Omega_{\mathsf{Th}}(\sigma_i, T, \mu),$$

where

$$\begin{split} &\Omega_{\mathsf{MF}} = 2\mathit{G}_{\mathsf{s}} \sum_{i} \sigma_{i}^{2} - 4\mathit{G}_{d} \prod_{i} \sigma_{i}, \\ &\Omega_{\mathsf{Vac}} = -2\mathit{N}_{c} \sum_{i} \int^{\Lambda} \frac{d^{3}p}{(2\pi)^{3}} \, \mathit{E}_{i}(p), \\ &\Omega_{\mathsf{Th}} = -2\mathit{N}_{c} \, \mathit{T} \sum_{i} \int \frac{d^{3}p}{(2\pi)^{3}} \left[\ln \left(1 + \mathrm{e}^{-(\mathit{E}_{i}(p) - \mu_{i})/\mathit{T}} \right) + (\mu_{i} \to -\mu_{i}) \right] \end{split}$$

• Minimize the potential for a fixed (T, μ)

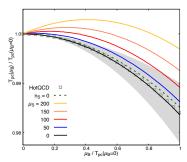
$$\frac{\partial \Omega}{\partial \sigma_u} = \frac{\partial \Omega}{\partial \sigma_d} = \frac{\partial \Omega}{\partial \sigma_s} = 0.$$

• For a fixed μ , obtain the inflection point in T (T_{co}) from σ_u vs. T curve.

Phase Diagram

- The phase diagram
- Curvature coefficients are obtained by fitting the ansatz.

$$\frac{T_{co}(\mu_X)}{T_{co}(0)} = 1 - \kappa_2^X \tilde{\mu}_X^2 - \kappa_4^X \tilde{\mu}_X^4$$



ullet The curvature of the $\mu_S=0$ line [MSA, D. Biswas, A. Jaiswal, and H. Mishra, 2024; A. Bazavov et al. (HotQCD), 2019]

	2f NJL (m=0)	3fNJL	LQCD
$\kappa_2^B \; (\mu_S = 0)$	0.01689	0.01627	0.016(6)

Curvature Coefficients

Different model parameters

	Λ (MeV)	$G_s\Lambda^2$	$G_d\Lambda^5$	$m_l(MeV)$	$m_s(MeV)$
Set I	631.4	1.835	9.29	5.5	135.7
Set II	602.3	1.835	12.36	5.5	140.7

• κ 's for different lines [MSA, D. Biswas, A. Jaiswal, and H. Mishra, 2024; A. Bazavov et al. (HotQCD),

2019; S. Borsanyi et al. 2020]

	$\kappa_2^B \; (\mu_S = 0)$	$\kappa_2^S(\mu_B=0)$	$\kappa_2^{B,n_S=0}$
NJL, set I	0.0163	0.0134	0.0148
NJL, set II	0.0162	0.0172	0.0143
Lattice QCD	0.016(6)	0.017(5)	0.012(4)
			0.0153(18)

Curvature from analytic structure

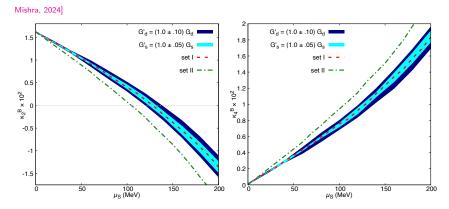
• The gap equation for σ_i

$$\begin{split} \frac{\partial \Omega}{\partial \sigma_i} &= \frac{\partial \Omega_{\mathsf{MF}}}{\partial \sigma_i} + \frac{\partial \Omega_{\mathsf{Vac}}}{\partial \sigma_i} + \frac{1}{8\pi^2} \sum_j \int \rho^2 \, d\rho \, \left[\frac{1}{1 + \mathrm{e}^{(E_j(\rho) - \mu_j)/T}} \right. \\ &\left. + \frac{1}{1 + \mathrm{e}^{(E_j(\rho) + \mu_j)/T}} \right] \frac{M_j}{E_j} \frac{\partial M_j}{\partial \sigma_i} = 0 \end{split}$$

- Along the phase line, the mean fields (σ_i) are constant up to $\mu_B/T \simeq 2$.
- Similar expression as the 2 flavor chiral case with p replaced by E(p) with constant mass.
- A nonlocal model brings T, μ dependencies to the quark masses, which can bring new effects on curvature coefficients of $T-\mu$ phase diagram.

Constrains on NJL model parameters

ullet The curvature coefficient κ_2^B as a function of $\mu_{\mathcal{S}[exttt{MSA},\ D.\ Biswas,\ A.\ Jaiswal,\ and\ H.}$



• Future LQCD data will help us constrain the NJL model (G_d) .

Vector Interaction

The vector interaction term

$$\mathcal{L}_{\text{Vec}} = \begin{cases} -G_V (\bar{q} \gamma^{\mu} q)^2 \\ -g_V \sum_{a=0}^{8} \left[(\bar{q} \gamma^{\mu} \lambda_a q)^2 + (\bar{q} i \gamma^{\mu} \gamma^5 \lambda_a q)^2 \right] \end{cases}$$

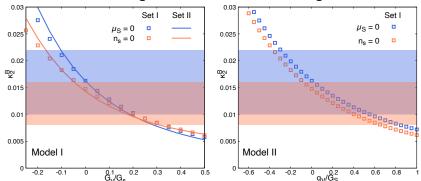
• the chemical potential is modified to

$$\mu_i^* = \begin{cases} \mu_i - 2G_V \sum_j n_j \\ \mu_i - 2g_V n_i \end{cases}.$$

- For degenerate quark masses, $M_u = M_d = M_s$, and $\mu_S = \mu_Q = 0$, $n_u = n_d = n_s$, implying that $g_V = 3G_V$.
- Net zero strange quark, $n_s = 0$, implies $g_V = 2G_V$.

Allowed Strength of Vector Interaction

We constrain the strength of vector interaction using LQCD results

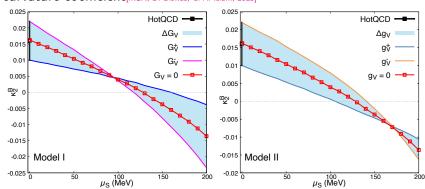


• The allowed range of G_V [MSA, D. Biswas, C. A. Islam, 2025]

	$\kappa_2^B \; (\mu_S=0)$	$\kappa_2^{B,n_S=0}$
Lattice QCD	0.016(6)	0.012(4)
G_V	[-0.233241, 0.424701]	[-0.076409, 0.667915]
gv	[-0.592698, 1.105132]	[-0.153077, 1.334883]

Constraints from μ_S Dependency

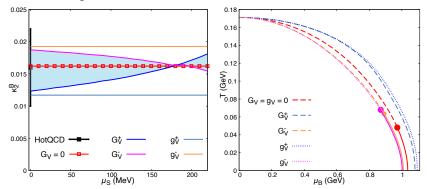
• Within the allowed range, we explore the effect of μ_S on the curvature coefficient[MSA, D. Biswas, C. A. Islam, 2025]



- At certain μ_S , the effect of G_V in getting nullified.
- LQCD results of κ_2^B as a function of μ_S will improve these findings.

Differentiate Different Type of Interaction

- Apart from G_d , flavor-independent vector interaction also introduces flavor mixing between light and strange quark.
- Flavor mixing due vector interaction with $G_d = 0$



• The critical endpoint depends on the strength of vector interaction.

Summary

- The characteristics of the transition line are independent of model parameters when the μ_q 's are identical for all quarks.
- \bullet We have an excellent agreement of κ_2^B with the available LQCD finding.
- κ_2^B as a function of μ_S and κ_2^S can be used to study the flavor mixing and $U(1)_A$ breaking 't Hooft interaction, G_d .
- Once explored in LQCD, we can constrain the NJL model to a better version of itself.
- Previously unconstrained vector interaction strength can also be constrained once the proposed quantities are explored in LQCD.
- In an effective model scenario, one can distinguish between flavor independent and dependent vector interaction from κ_2^B vs. μ_S data.

Acknowledgement

I would like to thank my collaborators

Deeptak Biswas Najmul Haque Chowdhury Aminul Islam Amaresh Jaiswal Hiranmaya Mishra

Thank You

Spontaneous Symmetry Breaking

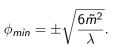
- A symmetry is spontaneously broken when the Lagrangian is symmetric under that symmetry, but the ground state does not.
- Lagrangian of scalar ϕ^4 theory

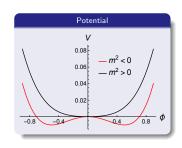
$$\mathcal{L} = T - V = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{4!} \phi^{4}$$

- Symmetric under Z_2 , $\phi \to -\phi$.
- The potential

$$V=\frac{1}{2}m^2\phi^2+\frac{\lambda}{4!}\phi^4$$

• With $m^2=c(T-T_c)$ and $T< T_c$, the minimum of the potential is at $(m^2 \to -\tilde{m}^2)$





Spontaneous Symmetry Breaking

Expanding around the minima

$$\phi = \sqrt{\frac{6\tilde{m}^2}{\lambda}} + \tilde{\phi}$$

The Lagrangian expanded around the minima is

$$\mathcal{L} = rac{1}{2}(\partial_{\mu} ilde{\phi})^2 + rac{3 ilde{m}^4}{2\lambda} - ilde{m}^2 ilde{\phi}^2 - \sqrt{rac{\lambda}{6}} ilde{m} ilde{\phi}^3 - rac{\lambda}{4!} ilde{\phi}.$$

- The above Lagrangian is not invariant under $\tilde{\phi} \to -\tilde{\phi}$. Is the symmetry gone?
- Not really! It is symmetric under

$$ilde{\phi}
ightarrow - ilde{\phi} - 2\sqrt{rac{6 ilde{m}^2}{\lambda}}.$$

Symmetries (Backup)

• The chiral projection operators are

$$P_R = \frac{1}{2}(1 + \gamma_5)$$
 and $P_L = \frac{1}{2}(1 - \gamma_5)$

- The quark doublet is given by $\psi=\left(\begin{array}{c} u\\ d\end{array}\right)$. With $\psi_R=P_R\psi$ and $\psi_L=P_L\psi$.
- The $SU(2)_L \times SU(2)_R$ symmetry transforms are

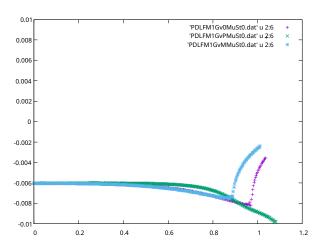
$$\psi_L \to \mathrm{e}^{i lpha_L^a au^a} \psi_L$$
 and $\psi_R \to \mathrm{e}^{i lpha_R^a au^a} \psi_R$.

 $\vec{\tau}$'s are the Pauli matrix.

• With little rearrangement, this transformation can be written as

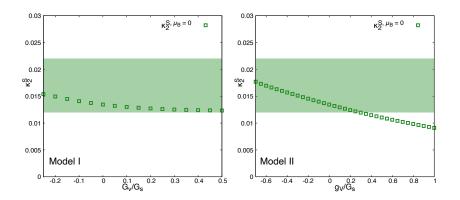
$$\psi o \mathrm{e}^{ilpha_{V}^{\mathrm{a}} au^{\mathrm{a}}}\psi$$
 and $\psi o \mathrm{e}^{ilpha_{A}^{\mathrm{a}}\gamma_{5} au^{\mathrm{a}}}\psi.$

Meanfield on the Phase Line(Backup)



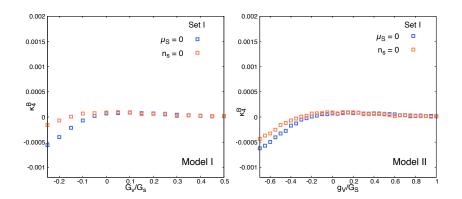
• Remains constant within the range of interest, $\mu_B/T_{co}(0) < 1$.

$\kappa_2^{\mathcal{S}}$ Vs. G_V/g_V (Backup)



- Very sensitive to the strength of $U(1)_A$ breaking, G_d .
- Mild variation as a function of the strength of vector interactions.
- Does not improve the constraints from κ_2^B .

κ_4^B Vs. G_V/g_V (Backup)



- The LQCD estimations for κ_4^B are 0.001(7) and 0.004(6) for $\mu_S=0$ and $n_s=0$, respectively.
- Does not improve the constraints from κ_2^B .

κ_4^B as a function of μ_S with $G_V/g_V(\text{Backup})$

