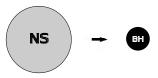
Insights into Gravitational Redshift in the Context of Isolated Neutron Stars

Kamal Krishna Nath

School of Physical Sciences National Institute of Science Education and Research


November 11, 2025

Universal Relations

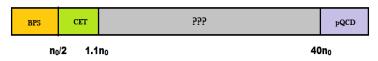
- As per the 'No-Hair' theorem, Isolated non-charged Black Holes can be entirely described by their mass and spin angular momentum.
- The material properties of any object become unmeasurable (hence unknowable) as the object collapses into a black hole.

- Astrophysical objects other than black holes are not expected to share the same type of universality.
- However, Neutron Stars and Quark Stars have recently been found to present certain universality.
- These relations can provide a greater understanding of the structural properties of these compact astrophysical objects as they are independent of the equation of state of matter.

Kamal Krishna Nath November 11, 2025

Introducing Neutron Stars

- It's a collapsed core of a massive astrophysical object.
- The fate of the remnant depends on the mass of the progenitor.
 - M < 8 M_{\odot} : White Dwarf
 - 8 $M_{\odot} < M <$ 20 M_{\odot} : Neutron Star
 - M> 20 M_{\odot} : Black Hole

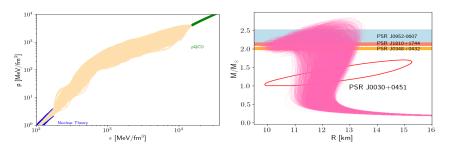


The NSs are modeled using the following equations of hydrostatic equilibrium:

$$\begin{array}{lcl} \frac{dP}{dr} & = & -(\mathcal{E}+P)\frac{m(r)+4\pi r^3P}{r(r-2m(r))}, \\ \frac{dm}{dr} & = & 4\pi\mathcal{E}r^2. \end{array}$$

Equation of state

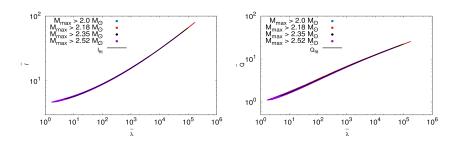
 Here, we try to construct a generic family of EoSs that follow both low density (CET) and high density (pQCD) limits.


- We interpolate between a CET EoS below saturation density and pQCD result at high densities.
- The adiabatic speed of sound $(c_s=\sqrt{\frac{\partial p}{\partial \epsilon}})$ has been used to obtain the EoS by randomising it arbitrarily in the intermediate densities.
- The piecewise linear segments for the sound speed of the following form:

$$c_s^2(\mu) = \frac{(\mu_{i+1} - \mu) c_{s,i}^2 + (\mu - \mu_i) c_{s,i+1}^2}{\mu_{i+1} - \mu_i},$$
(1)

In the next step, we have imposed the observational constraints.

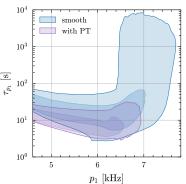
Equation of State


• The family of EoSs we get after imposing the observational constraints:

- We have also highlighted the latest maximum mass constraint.
- Once we construct the EoSs, we solve the TOV equation to generate the mass-radius sequence of the NSs.

Kamal Krishna Nath November 11, 2025

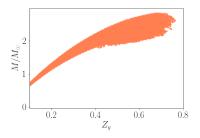
Universality


K. K. Nath, R. Mallick, S. Chatterjee, MNRAS, 524, 1438 (2023).

- \bullet \bar{I} and \bar{Q} have considerable spread as a function of gravitational mass.
- \bullet However, the picture changes drastically when \bar{I} and \bar{Q} are plotted as a function of love number.
- They follow a curve with minimal spread.

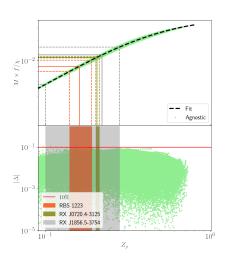
Limitations of URs

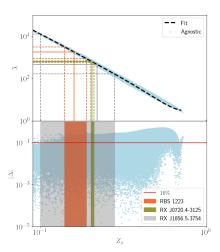
- URs can largely cater to understanding macroscopic variables, but fail to capture the microphysical elements of NSs.
- The comparison of URs for smooth and PT EOSs shows that the exclusive region has no implications on the URs.



P. Thakur, S. Chatterjee, K. K. Nath and R. Mallick, *Phys. Rev. D*, 110, 10, 103045 (2024)

Kamal Krishna Nath November 11, 2025


Gravitational Redshift


• Gravitational redshift is defined as $Z_g=1/\sqrt{1-2GM/Rc^2}-1$, and recent observations have motivated us to analyze the URs in the context of Z_g .

- As the EoSs follow the astrophysical constraints, they provide us with an upper limit on the value of redshift, $Z_g(max) \leq 0.763$ which further constrains the previous maximum estimates of ≤ 2 .
- The range of values of Z_g for a $1.4 M_{\odot}$ NS can also be seen to agree with the limiting values provided by Lindblom et al. (2014), i.e. $0.854 \geq Z_g \geq 0.184$.

URs Related to Gravitational Redshift

$$\log y = \sum_{i=0}^{4} a_{yi} \log(Z_g)^i, |\Delta| = |\frac{V_y - V_{fit}}{|V_{fit}|}|$$

Kamal Krishna Nath November 11, 2025 9 /

Theoretical estimates of the parameters using URs

	C	$ar{\lambda}$	$M imes ar{f}/\chi$
RBS 1223 ($Z_g = 0.16^{+0.03}_{-0.02}$)	$0.128^{+0.019}_{-0.013}$	1787_{+1350}^{-923}	$0.008^{+0.002}_{-0.001}$
RX J0720.4-3125 ($Z_g = 0.205^{+0.006}_{-0.003}$)	$0.156^{+0.003}_{-0.002}$	626_{+40}^{-72}	$0.011^{+0.0004}_{-0.0002}$
RX J1856.5-3754 ($Zg = 0.22^{+0.06}_{-0.12}$)	$0.164^{+0.031}_{-0.077}$	464_{+12194}^{-299}	$0.012^{+0.004}_{-0.008}$

S. Chatterjee & K. K. Nath, *EPJC*, 85, 862 (2025).

Kamal Krishna Nath

November 11, 2025 10/12

Comparison of λ estimates with Luo et al. 2022

	Luo et al.	This work
RBS 1223	420^{+3260}_{-370}	1787^{+1350}_{-923}
RX J0720.4-3125	641^{+56}_{-48}	626^{+40}_{-72}
RX J1856.5-3754	1460^{+890}_{-980}	464_{-299}^{+12194}

- The $\bar{\lambda}$ estimate of RX J0720.4-3125 closely agrees with the Bayesian estimate since the uncertainty in measurement is less.
- It shows that theoretical estimates are very accurate for observations with less uncertainty and can be used as an alternative for statistical analysis.

References

- Insights Into Neutron Stars From Gravitational Redshifts and Universal Relations Chatterjee S., Nath K. K., EPJC, 85, 862 (2025)
- Prospect of unraveling the first-order phase transition in neutron stars with f and p1 modes Thakur P., Chatterjee S., Nath K. K., Mallick R., PhRvD, 110, 103045 (2024)
- I-Love-Q relations for a generic family of neutron star equations of state, Nath K. K., Mallick R., Chatterjee S., MNRAS, 524, 1438 (2023).

Thank You

Kamal Krishna Nath November 11, 2025

