

Our Research activities in India and at JINR

Ajay Kr. Tyagi Department of Physics Banaras Hindu University, Varanasi

Plan of talk

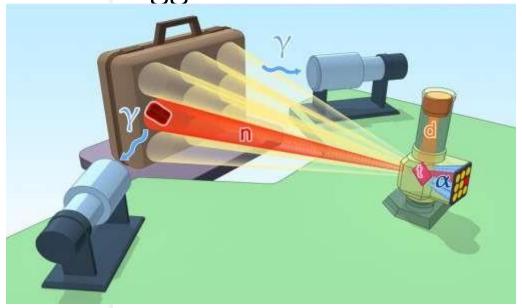
- 1. Who we are
- 2. BHU and JINR
- 2. What we are doing at BHU
- 3. Possible research activities at JINR, Dubna and in India

Banaras Hindu University, Varanasi, India

- ❖ Varanasi is located in the middle-Ganges valley in the southeastern part of the state of Uttar Pradesh, lies on the left bank of the river. It is 692 kilometers (430 mi) to the southeast of India's capital New Delhi.
- ❖ Banaras Hindu University was founded in 1916 with area1300 acres (5.3 Km²). It is the largest residential university of India having more than 30,000 students, 1700 faculty members and 144 departments.
- A large number of students from U.S.A, Europe, Asia, Middle East, Africa etc., come to BHU.

Department of Physics, BHU

❖ The Department of Physics is having 65 faculties with 6 specializations and more than 160 PhD students.


We are having a vibrant group of seven PhD students from different parts of India and working on very interesting Nuclear Physics problems and publishing their work in highly repute research journals.

- 1. Heavy Ion fusion-fission dynamics by using 15 UD Pelletron at IUAC, New Delhi and BARC-TIFR Pelletron, Mumbai
- 2. Neutron scattering experiments at BARC, Mumbai, India
- 3. Surrogate reaction dynamics by using BARC-TIFR, Pelletron facility Mumbai
- 4. Alpha and Proton scattering experiments at Variable Energy Cyclotron (VECC), Kolkata

5. Neural networks and Nuclear Physics

Tagged Neutrons Method – TNM

Main components:

- Neutron generator
- •Position sensitive detector of α-particles
- Detectors of γ-rays / neutrons

D +
3
H = 4 He (3.5MeV)
+ n (14.1MeV)

Aims of the project

- 1. Using tagged neutron beams for experimental investigations in the field of fundamental Nuclear Physics.
- 2. Investigation of reactions (n,n), γ) using the tagged neutrons method.
- 3. Investigation of reactions (n,2n'), (n,n') using the tagged neutron method.
- 4. Development of the tagged neutron method for identification of a wider range of elements and substances.
- 5. Development of a database on reaction cross sections for interaction of neutrons with energy 14.1 MeV with nuclei and on the characteristic gamma lines.

For high energy gamma rays spectroscopy BGOs (Bismuth Germanium Oxides) detectors are widely used due to the high atomic number of Bismuth (83) and its high density which make him the most efficient gamma-absorber.

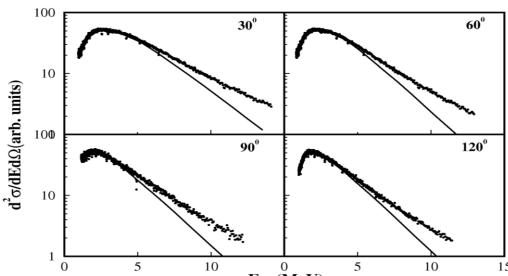
Left Side View

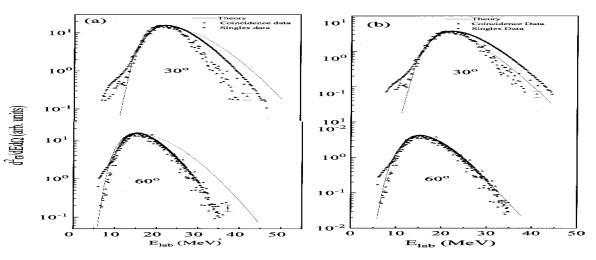
Right Side View

Fig: A multi detector system "Romasha" formed of 18 BGO detectors.

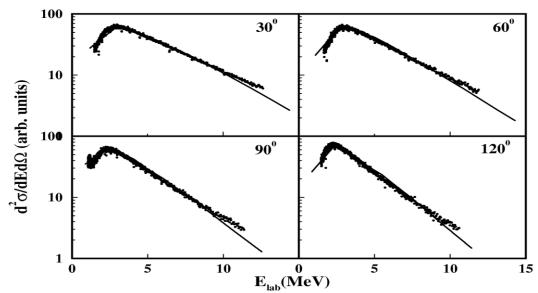
Each side we have 9 BGO detectors at a distance of 75cm and at angle of 14degree from the centre of neutron source.

Some pictures of the work under BHU-Russian Collaboration

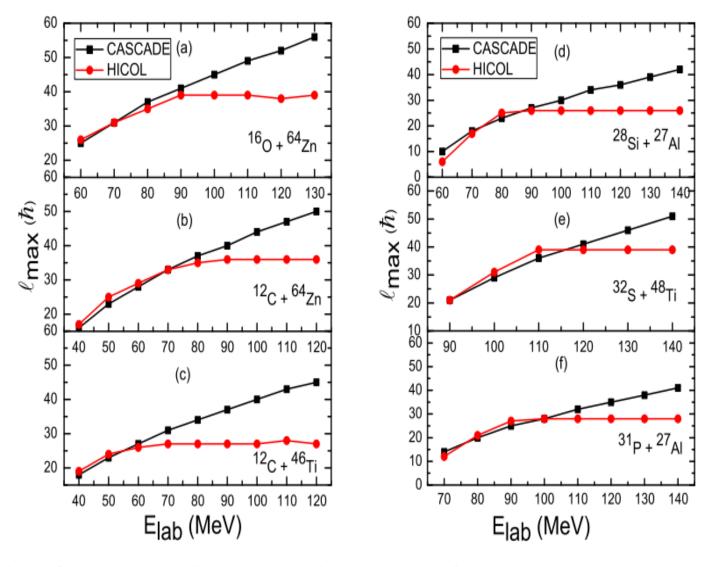




Study of heavy ion fusion dynamics



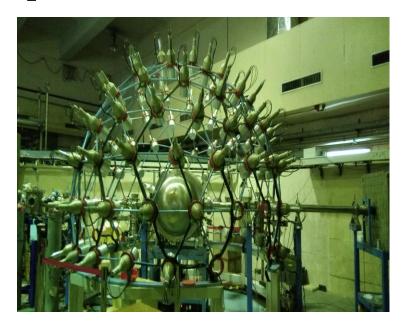
Neutron spectra with a = A/8 and $r_0 = 1.25$ for $^{31}P + ^{45}Sc$ with a = A/8 at a = 1.25 for a = 1



 α -spectra for $^{28}\text{Si}+^{51}\text{V.(a)}\ \ell_{\text{max}}=56\hbar$ (b) $\ell_{\text{max}}=30\hbar$

Neutron spectra using $r_0 = 1.25$ and a = A/8 for $^{12}C + ^{64}Zn$ with $\ell m = 39\hbar$ at $E_{lab} = 85$ MeV.

Effect of energy variation on the dissipative evolution of the system in heavy-ion fusion reactions


- FIG. 4. Variation of angular momentum l_{max} with respect to incident energy E_{lab} for asymmetric systems (a)–(c) and symmetric systems (d)–(f).
 - N.K. Rai and **Ajay Kumar**, Phys. Rev. C **98**, 024626 (2018).


- Dissipation in the entrance channel increases with the projectile energy and causes the angular momentum hindrance in both the symmetric and asymmetric systems at the higher energy.
- The dissipative behavior of the fusing nuclei also depends on the entrance channel parameters.
 - We observed that with increasing value of mass asymmetry angular momentum hindrance decreases linearly, angular momentum and hindrance increases linearly with an increase the coulomb interaction term (ZpZt).

Decay of fission-fragments from Compound Nucleus

Measurement of neutrons multiplicity to investigate the role of entrance channel parameters on the nuclear dissipation

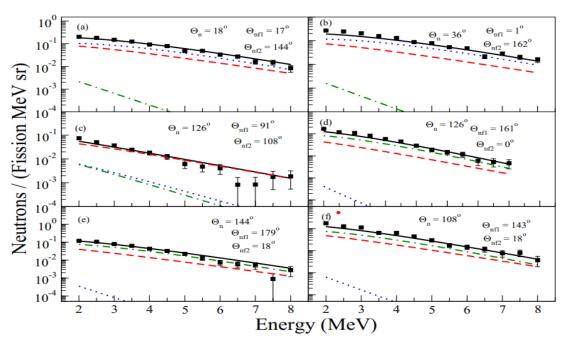
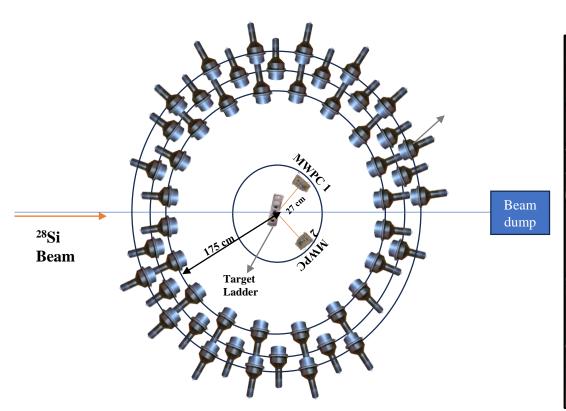
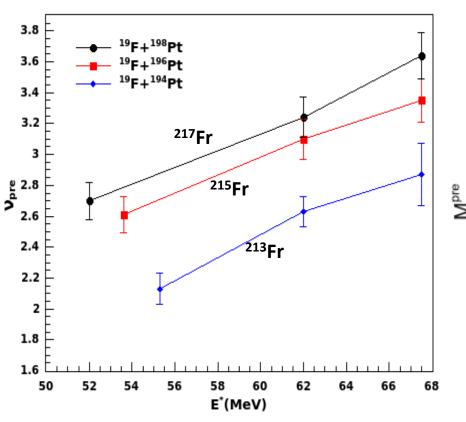



FIG. 1. Neutron multiplicity spectra (filled squares) at various angles for the reaction $^{18}O + ^{186}W$ at $E_{lab} = 106.51$ MeV along with the fits for the pre-scission (dashed lines) and post-scission contributions from the one fragment (dotted lines) and that from the other (dotted-dash lines) are shown. Here, the solid black line represents the total contribution.

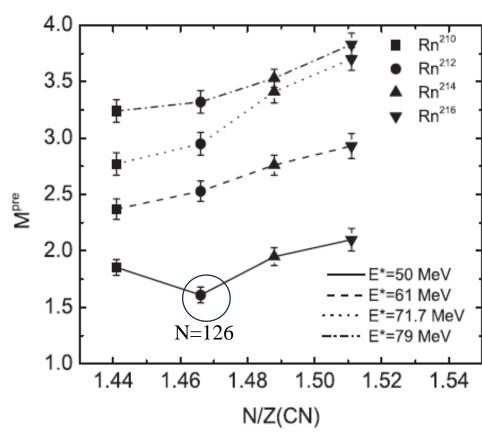
Measured the pre- and post-scission neutron multiplicity for 180 + 186W and compared with 160 + 181Ta, existing in the literature. Nuclear dissipation decreases with the increasing value of the entrance channel mass asymmetry. In the present case, it was also verified that nuclear dissipation increases with the increasing value of the Coulomb factor ZPZT as mentioned in our theoretical work (PRC 2018).

Ajay Kumar Tyagi et al, Phys. Rev. C **100**, 014614 (2019).

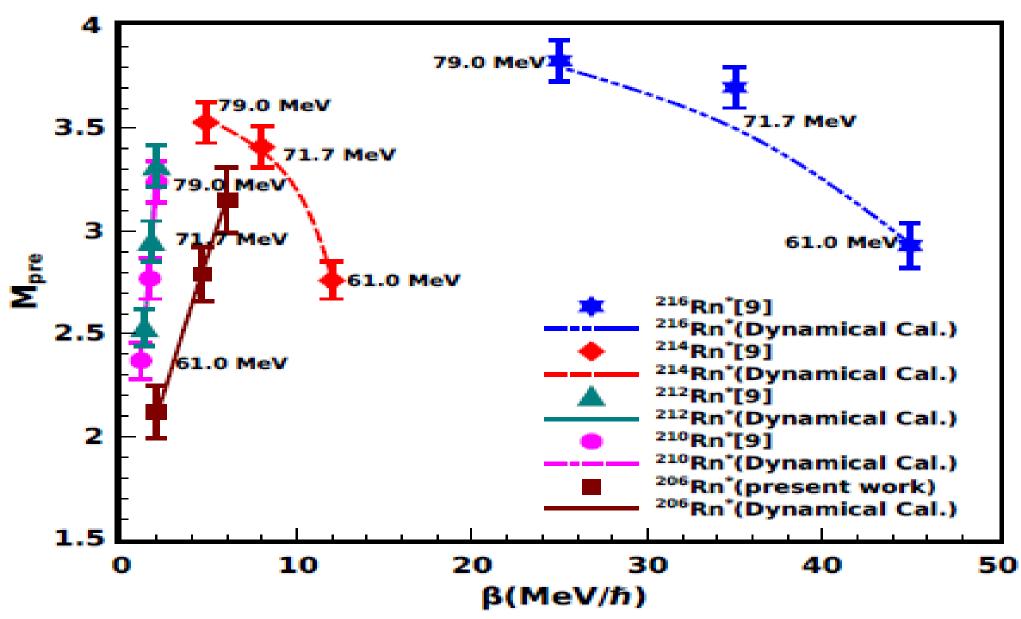
28Si + 178Hf → 206Rn [61-90 MeV]



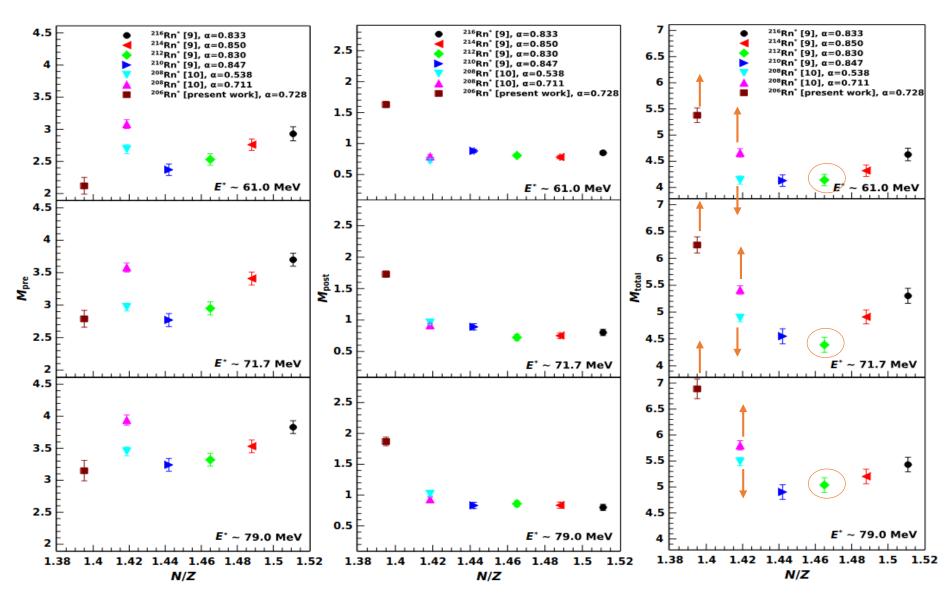
Inside view of NAND scattering chamber


How We Were Motivated for the Present Work

28Si + 178Hf → 206Rn [61-90 MeV


V. Singh et. al. PRC 86, 014609 (2012)

Shell closure effect seen for ²¹³Fr (N=126) compound nucleus.



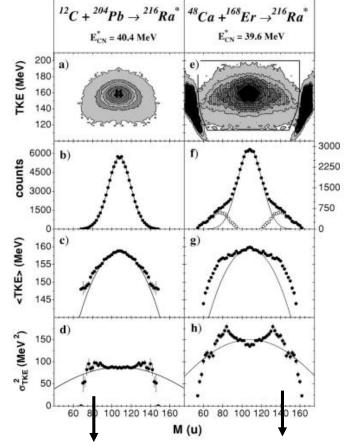
Rohit Sandal et. al. PRC 87, 014604 (2013)

N/Z value does not affect dissipation specifically.

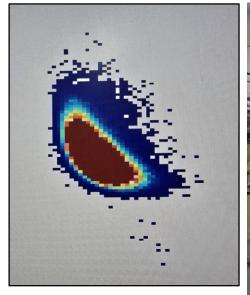
Variation in β w.r.t M_{pre} for compound nucleus $^{206-216}$ Rn* w.r.t. excitation energy. 30,28Si+178Hf=208,206Rn, 16,18O+194,198Pt=210,12,14,16Rn

➤ Variation of M_{pre} (left), M_{post} (center), and M_{total} (right) with respect to the N/Z ratio for compound nuclei 206,208,210,212,214,216 Rn at excitation energies of 61.0, 71.7, and 79.0 MeV.

Ajay Tyagi, Punit Dubey et al. Phys. Rev. C(Letter), 112(2025)


Conclusion

- ☐ Below shell closure, dissipation increases with rise in excitation energy, around shell remains stable, while beyond shell closure dissipation gradually decreases as excitation energy increases..
- \square M_{total} decreases around shell closure compound nuclei, while increases when move away from shell closure either side.
- ☐ More experimental data near shell closure (208Pb, 209Bi, and 211At) in the pre-actinide region are required to see this effects in fission dynamics.
- □ Further investigations are necessary in the mass region above A_{CN} =220 to examine the influence of shell closure. To achieve this, higher-mass projectile beams such as ⁴⁸Ca are required, which are currently unavailable in India. Therefore, such experiments can be planned to be conducted at JINR, Dubna.


To study the impact of entrance channel through fission fragment mass distribution

CA. Yu. Chizhov et al., Phys. Rev. C 67, 011603(R) (2003).

- Fusion-Fission
- No significant contribution from asymmetric fission (~1.5%)
- **Quasi-fission**

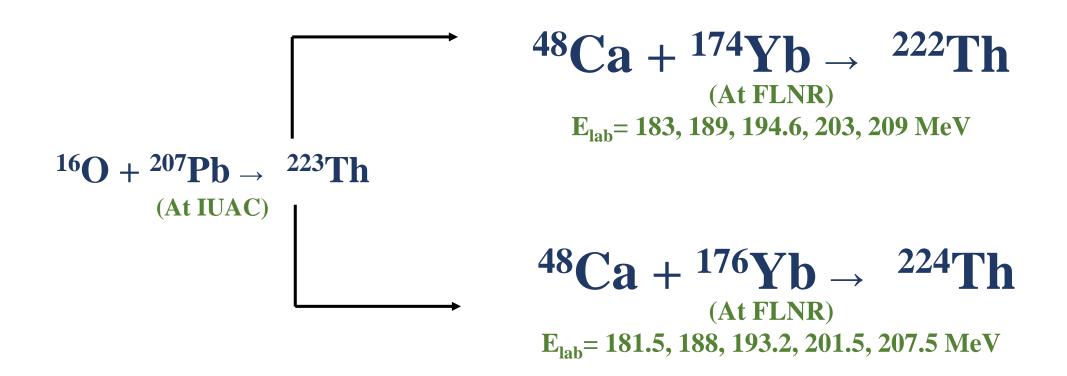
Large contribution (~30%) of asymmetric fission mode

Mass Asymmetry

Mass Asymmetry, $\alpha = [(A_T - A_P)/(A_T + A_P)]$ where, T is Target, P is Projectile, A is the mass number

Reaction	Mass Asymmetry	Businaro- Gallone mass asymmetry (\alpha BG)
$^{14}N + ^{209}Bi \rightarrow ^{223}Th$	0.8744	0.9715
$^{16}O + ^{207}Pb \rightarrow ^{223}Th$	0.8565	0.8715

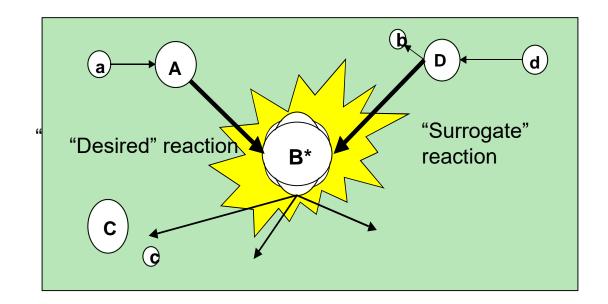
Product of Charges


Reaction	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$
$^{14}N + ^{209}Bi \rightarrow ^{223}Th$	581
$^{16}O + ^{207}Pb \rightarrow ^{223}Th$	656

Details of the Setup

MWPC	Folding Angle	Distance
MWPC 1	40°	23.5 cm
MWPC 2	122°	22.5 cm

Experiment at JINR, Dubna for FFMD

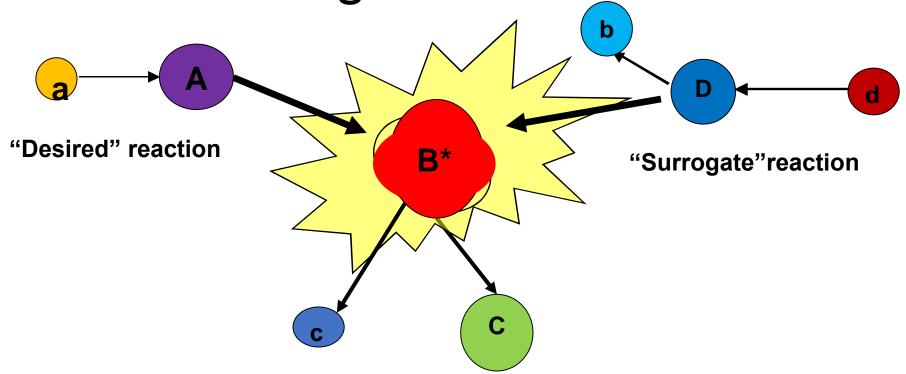

By performing this, we can study change in the groundstate deformations of the ²²²Th, ²²³Th, ²²⁴Th isotopes.

Study of the surrogate ratio method by determination of ⁵⁶Fe (n,xp) cross sections

The cross section $\sigma_{\alpha\chi}$ for the "desired" two-step reaction

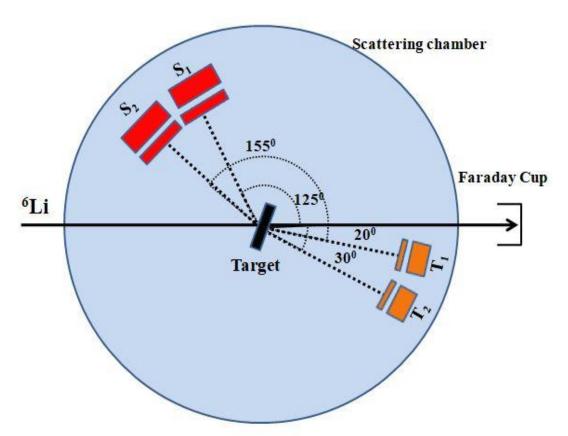
$$a + A --> B^* --> c + C$$

can be determined indirectly with the Surrogate method.


Form the compound nucleus B* via an alternative ("Surrogate") reaction:

$$d + D --> b + B^*$$

Then combine the measured decay probabilities for:


$$B^* --> c + C + ...$$


Absolute surrogate method

$$\sigma_{A(a,c)C} = \sigma_{a+A}^{CN}(E_x)P_c(E_x)$$

Requirements

Chiba-Iwamoto condition

- 1. Spin of CN is less than 10 ħ
- 2. Spin distribution of two reactions → similar

Methodology

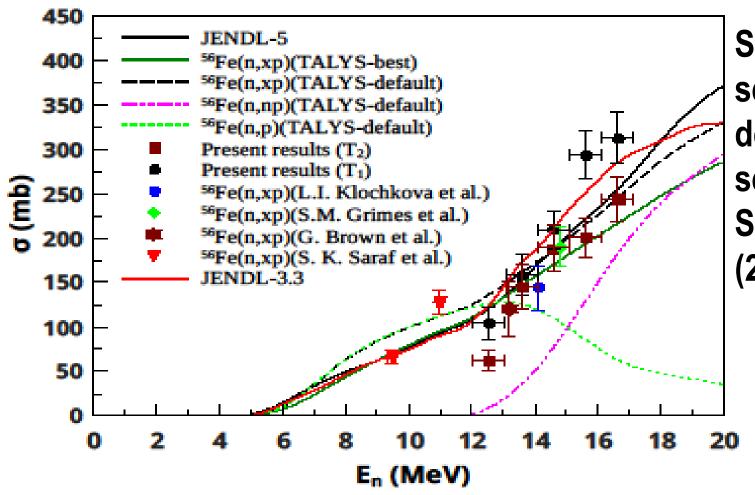
Desired reaction: ⁵⁶**Fe(n,xp)**

Reference reaction: 52Cr(n,p)

Surrogate reaction:

 6 Li + 55 Mn → 4 He+ 57 Fe* * → 56 Fe (n, xp)

Surrogate reaction:


 6 Li + 51 V→ 4 He+ 53 Cr* → 52 Cr(n,xp)

E(6Li)=25 MeV

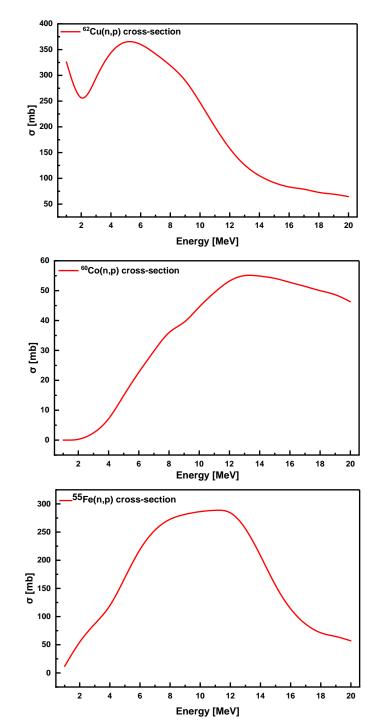
E(6Li)=25 MeV

 $\sigma_{CN}^{n+56Fe}(E^*)P_{xn}^{5'Fe}(E^*)$

$$\overline{\sigma_{CN}^{n+52Cr}(E^*)P_{xp}^{53}Cr}(E^*)$$

Study of the surrogate cross sections ratio method by determination of 56Fe(n,xp) cross sections, Ajay Tyagi, Aman Sharma et al, Phys Lett B 848, (2024)

Measurement of ⁶²Cu(n,xp) cross-section using surrogate ratio method:


Desired Reactions: ⁶²Cu(n,xp) Reference Reaction: ⁵³Cr(n,xp) Surrogate Reaction: Surrogate Reaction: $^{7}\text{Li} + ^{59}\text{Co} \rightarrow ^{63}\text{Cu} + t$ $^{7}\text{Li} + ^{51}\text{V} \rightarrow ^{54}\text{Cr} + \alpha$ $Q_{gg} = 3.307 \text{ MeV}$ $Q_{gg} = 17.214 \text{ MeV}$ $S_n^{=8.875} = 8.875 \text{ MeV}$ $S_n^{55} = 9.719 \text{ MeV}$ For the excitation energy of CN = 24.642 MeVExcitation energy of CN equivalent to $E_n = 14 \text{ MeV}$ $E^* = 24.642 \text{ MeV}$ Using equation: Using equation: $E^* = Q_{\rm gg}\,$ - $Q_{\rm opt}$ $E^* = Q_{gg} - Q_{opt}$ $E(^6Li) = 33.45 \text{ MeV}$ $E(^{6}Li) = 19.85 \text{ MeV}$

Measurement of ⁶⁰Co(n,xp) cross-section using surrogate ratio method:

Desired Reactions: ⁶⁰ Co(n,xp)	Reference Reaction: ⁶¹ Ni(n,xp)
Surrogate Reaction:	Surrogate Reaction:
$^{7}\text{Li} + ^{58}\text{Fe} \rightarrow ^{61}\text{Co} + \alpha$	$^{7}\text{Li} + ^{59}\text{Co} \rightarrow ^{62}\text{Ni} + \alpha$
$Q_{gg} = 13.225 \text{ MeV}$	$Q_{gg} = 16.998 \text{ MeV}$
$S_n^{=} = 9.319 \text{ MeV}$	$S_n^{so} = 10.595 \text{ MeV}$
Excitation energy of CN equivalent to $E_n = 14 \text{ MeV}$	For the excitation energy of
$E^* = 23.089 \text{ MeV}$	CN = 23.089 MeV
Using equation:	Using equation:
$E^* = Q_{gg} - Q_{opt}$	$E^* = Q_{gg} - Q_{opt}$
$E(^{7}Li) = 35.8 \text{ MeV}$	$E(^{7}Li) = 48.382 \text{ MeV}$

Measurement of ⁵⁵Fe(n,xp) cross-section using surrogate ratio method:

	9
Desired Reactions: ⁵⁵ Fe(n,xp)	Reference Reaction: ⁵² Cr(n,p)
Surrogate Reaction:	Surrogate Reaction:
$^{6}\text{Li} + ^{52}\text{Cr} \rightarrow ^{56}\text{Fe} + \text{d}$	$^{6}\text{Li} + ^{51}\text{V} \rightarrow ^{53}\text{Cr} + \alpha$
$Q_{gg} = 6.138 \mathrm{MeV}$	$Q_{gg} = 14.746 \text{ MeV}$
$S_n^{55} = 11.197 \text{ MeV}$	$S_{n}^{55} = 7.939 \text{ MeV}$
Excitation energy of CN equivalent to $E_n = 14 \text{ MeV}$	For the excitation energy of $CN = 24.947 \text{ MeV}$
E* = 24.947 MeV	Using equation:
Using equation:	$E^* = Q_{gg} - Q_{opt}$
$E^* = Q_{gg} - Q_{opt}$	$E(^{6}Li) = 37.46 \text{ MeV}$
$E(^{6}Li) = 32.84 \text{ MeV}$	

Experimental work based on neutron induced reaction with different target material at Folded Tandem Ion Accelerator, BARC, Mumbai, India

E _n (MeV)	Present data (mb)	Correlation matrix					
1.67 ± 0.14	10.8476 ± 1.1544	1.000					
2.06 ± 0.14	12.2408 ± 0.9994	0.1503	1.000				
2.06 ± 0.14	8.2430 ± 0.7168	0.1163	0.1587	1.000			

- 1. Measurements of neutron capture cross sections on 109Ag at 0.53, 1.05, 1.66 MeV, M Upadhyay & Ajay Kumar. IEEE, 1-4, 2023.
- 2. Measurement of neutron induced reaction cross-section of ⁹⁹Mo, M. Upadhyay & **Ajay Kumar**. Journal of Physics G: Nuclear and Particle Physics, (September 2023).
- 3. Neutron radiative capture cross section for sodium with covariance analysis, A. Gandhi & **Ajay Kumar**. The European Physical Journal A 57, 1 (2021).
- 4. Neutron capture reaction cross section measurement for iodine nucleus with detailed uncertainty quantification, A. Gandhi & Ajay Kumar. The European Physical Journal Plus 136, 819 (2021).
- 5. Measurement of neutron induced reaction cross-section of ⁹⁹Mo, **Ajay Kumar** et al, Journal of Phys G, Oct 17, 2023

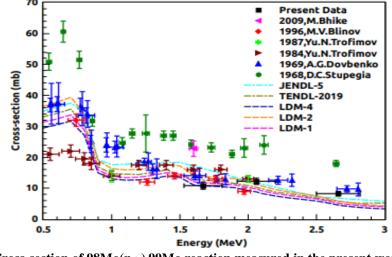


Fig.1 Cross-section of $98Mo(n,\gamma)$ 99Mo reaction measured in the present work compared with Exfor database, different level density models and different evaluated data libraries. (JPG, September, 2023)

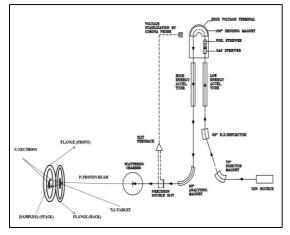
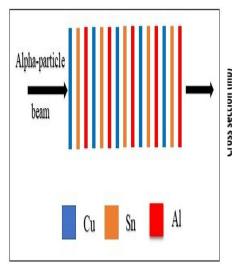


Fig. 2 FOTIA tandem accelerator (Experimental set up).


Fig. 3 Experimental set-up for the offline γ-ray spectroscopy using HPGe detector system.

Experimental work based on alpha indued reaction with different targets at Variable Energy Cyclotron Center (VECC), Kolkata, India from 2022 to till now

Table.1

E_{α} (MeV)	Cross-section (mb) $(\sigma \pm \Delta \sigma)$	Correla	Correlation matrix						
19.47 ± 1.15	1.78 ± 0.14	1							
22.23 ± 0.98	20.74 ± 1.41	0.193	1						
23.75 ± 1.09	27.01 ± 1.78	0.199	0.228	1					
26.18 ± 0.96	51.10 ± 2.99	0.224	0.257	0.265	1				
27.68 ± 0.89	51.49 ± 3.0	0.225	0.258	0.267	0.300	1			
29.75 ± 0.92	92.09 ± 5.44	0.222	0.255	0.263	0.296	0.297	1		
31.25 ± 0.52	99.27 ± 6.09	0.214	0.245	0.253	0.285	0.286	0.283	1	
33.15 ± 0.78	158.20 ± 9.63	0.216	0.247	0.255	0.287	0.288	0.285	0.274	1
36.32 ± 0.46	278.78 ± 18.68	0.196	0.224	0.232	0.261	0.262	0.259	0.249	0.251

- 1. Measurement of alpha-induced reaction cross-sections on ^{nat}Mo with detailed covariance analysis, M Choudhary & **Ajay Kumar.** The European Physical Journal A 58(5), 1-10 (2022).
- 2. Measurement of excitation functions for ^{nat}Cu(α, x) reactions with detailed covariance analysis, M Choudhary & **Ajay Kumar.** Journal of Physics G: Nuclear and Particle Physics 50(1), 015103 (2022).
- 3. Measurement of alpha-induced reaction cross-sections for ^{nat}Zn with detailed covariance analysis, M Choudhary & **Ajay Tyagi.** Nuclear Physics A 1038, 122720 (2023).
- 4. Excitation functions of alpha-particle induced nuclear reactions on ^{nat}Sn, M Choudhary & Ajay

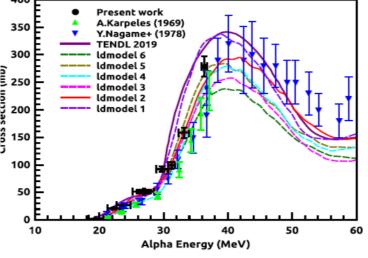


Fig.1 Cross sections for $^{nat}Zn(\alpha,x)^{65}Zn$ reaction from this study in comparison of the available experimental data from EXFOR and theoretical calculation from TALYS. (Nuclear Physics A, 1038, 122720.)

Fig. 2 A close view photograph of the beam line

Fig. 3 A picture during the experiment at VECC, Kolkata, India

Quasi-fission

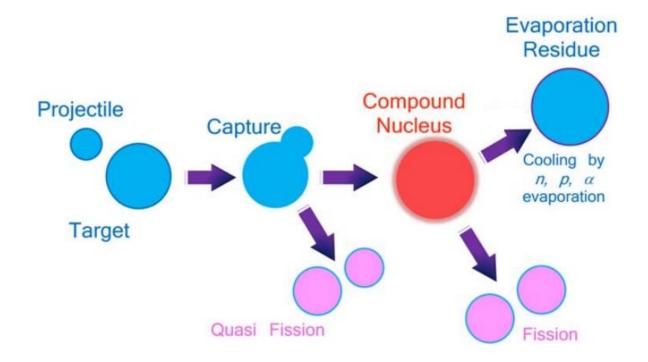


Figure: Schematic picture of different processes that occur in nuclear reactions

The main experimental challenge is to find the factors that prevent compound nucleus (CN) production. Measuring the parameters of the QF events can help with these factors. Also, no single parameter can establish quasi-fission with certainty. So, we have accessed 41 nuclear reactions, which are tabulated, along with the essential parameters that will help us to understand QF process thoroughly.

Then we have categorized these **reactions based on parameters**:

Table: Role of high Z_PZ_T in quasi-fission.

Sl. No.	Reaction	Z_pZ_T	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	X _m	Def. of projectile	Def. of target
1.	⁸⁶ Kr+ ¹⁹⁷ Au	2844	43	0.392	0.943	0.937	0.000	-0.195
2.	$^{84}\text{Kr} + ^{198}\text{Pt}$	2808	42	0.404	0.940	0.906	0.086	-0.115
3.	86 Kr + 198 Pt	2808	42	0.394	0.939	0.900	0.000	-0.115
4.	⁵⁸ Fe+ ²⁰⁸ Pb	2132	56	0.564	0.927	0.796	0.259	0.000
5.	⁴⁰ Ca+ ²³⁸ U	1840	72	0.712	0.936	0.761	0.000	0.286
6.	⁴⁸ Ca+ ²⁰⁸ Pb	1640	62	0.625	0.909	0.676	0.000	0.000
7.	⁴⁰ Ca+ ²⁰⁸ Pb	1640	62	0.677	0.914	0.721	0.000	0.000
8.	⁴⁴ Ca+ ¹⁹⁸ Pt	1560	58	0.636	0.900	0.681	0.000	-0.115
9.	$^{36}S + ^{238}U$	1472	76	0.737	0.925	0.647	0.168	0.286
10.	³² S+ ²³² Th	1440	74	0.75	0.921	0.669	0.208	0.207
11.	$^{34}S + ^{232}Th$	1440	74	0.744	0.896	0.654	-0.235	0.207
12.	⁵⁰ Ca+ ¹⁷⁶ Yb	1400	50	0.557	0.761	0.619	0.000	0.289

ent	Sl. No.	Reaction	CN	Barrier (MeV)	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	α	α_{BG}	Def. of Projectile	Def. of Target
the	1.	$^{11}B + ^{235}U$	²⁴⁶ Bk	53.525	460	0.911	0.893	-	0.215
	2.	¹² C+ ¹⁷⁸ Hf	¹⁹⁰ Pt	52.8036	432	0.874	0.816		0.278
can	3.	¹² C+ ²⁰⁴ Pb	²¹⁶ Ra	58.8418	492	0.888	0.751		0.000
ear	4.	¹⁶ O+ ¹⁷⁵ Lu	¹⁹¹ Au	68.544	568	0.832	0.823	-0.010	0.289
aı	5.	¹⁶ O+ ¹⁸⁶ Os	²⁰² Po	72.735	608	0.842	0.851	-0.010	0.209
hat	6.	¹⁴ N+ ²³² Th	²⁴⁶ Bk	73.034	630	0.886	0.893	-	0.207
	7.	¹⁶ O+ ²⁰⁹ Bi	²²⁵ Pa	77.854	664	0.857	0.876	-0.010	-0.011
	8.	¹⁶ O+ ²³² Th	²⁴⁸ Cf	82.8951	720	0.871	0.897	-0.010	0.207
	9.	$^{16}O + ^{238}U$	²⁵⁴ Fm	84.369	736	0.874	0.902	-0.010	0.186
	10.	¹⁹ F+ ²³² Th	²⁵¹ Es	92.029	810	0.849	0.908	0.262	0.207
	11.	$^{19}F+^{238}U$	²⁵⁷ Md	93.6718	828	0.852	0.849	0.262	0.286
	12.	20 Ne+ 205 Tl	²²⁵ Pa	94.002	810	0.822	0.876	0.364	0.000
	13.	$^{24}Mg + ^{186}W$	²¹⁰ Rn	103.494	888	0.771	0.857	0.393	0.090
	14.	$^{24}Mg + ^{178}Hf$	²⁰² Po	101.475	864	0.762	0.851	0.353	-0.063
	15.	$^{28}\text{Si} + ^{160}\text{Gd}$	¹⁸⁸ Pt	105.619	896	0.702	0.818	-0.363	0.282
	16.	$^{28}\text{Si} + ^{158}\text{Gd}$	¹⁸⁶ Pt	105.905	896	0.698	0.821	0.218	0.282
	17.	30 Si+ 176 Yb	²⁰⁶ Po	112.781	980	0.708	0.846	-0.236	0.289
	18.	²⁸ Si+ ¹⁹⁷ Au	²²⁵ Np	126.558	1106	0.751	0.886	-0.363	-0.125
	19.	$^{34}S + ^{168}Er$	²⁰² Pb	125.13	1088	0.663	0.850	-0.235	0.297
	20.	$^{32}S + ^{182}W$	²¹⁴ Th	135.915	1184	0.701	0.878	0.208	0.232
	22.	$^{34}S + ^{186}W$	²²⁰ Th	134.062	1184	0.691	0.873	-0.235	0.090
	23.	³² S+ ²³² Th	264 Sg	158.959	1440	0.758	0.921	0.208	0.207
	24.	³⁴ S+ ²³² Th	266 Sg	157.585	1440	0.744	0.895	-0.235	0.207
	25.	$^{36}S + ^{238}U$	²⁷⁴ Hs	159.125	1472	0.737	0.925	0.168	0.286
	26.	$^{37}\text{Cl} + ^{154}\text{Sm}$	¹⁹¹ Au	121.625	1054	0.613	0.823	0.011	0.270
	27.	⁴⁰ Ca+ ¹⁵⁴ Sm	¹⁹⁴ Pb	144.988	1240	0.587	0.884	0.000	0.270
	28.	⁴⁸ Ca+ ¹⁴⁴ Sm	¹⁹² Pb	141.065	1240	0.495	0.844	0.000	0.000
	29.	⁴⁸ Ca+ ¹⁵⁴ Sm	²⁰² Pb	139.148	1240	0.525	0.836	0.000	0.270
	30.	$^{48}\text{Ca} + ^{168}\text{Er}$	²¹⁶ Ra	150.926	1360	0.555	0.751	0.000	0.297
	31.	⁴⁸ Ti+ ¹⁵⁴ Sm	²⁰² Po	154.156	1364	0.527	0.850	0.011	0.272
	32.	50Ca+ 176 Yb	²²⁶ Th	153.237	1400	0.557	0.761	0.000	0.289
	33.	50Ti + 170Er	²²⁰ Th	165.736	1496	0.545	0.087	0.000	0.298
	34.	⁴⁴ Ca+ ¹⁹⁸ Pt	²⁴² Cf	171.194	1560	0.636	0.900	0.000	-0.115
	35.	⁴⁸ Ca+ ²⁰⁸ Pb	²⁵⁶ No	176.412	1640	0.625	0.909	0.000	0.000
	36.	⁴⁰ Ca+ ²⁰⁸ Pb	²⁴⁸ No	181.325	1640	0.677	0.914	0.000	0.000
	37.	⁴⁰ Ca+ ²³⁸ U	²⁷⁸ Cn	199.201	1840	0.712	0.936	0.000	0.286
	38.	⁵⁸ Fe+ ²⁰⁸ Pb	²⁶⁶ Hs	227.209	2132	0.564	0.927	0.259	0.000
	39.	⁸⁴ Kr+ ¹⁹⁸ Pt	²⁸² Fl	290.977	2808	0.404	0.940	0.086	-0.115
	40.	⁸⁶ Kr+ ¹⁹⁸ Pt	²⁸⁴ Fl	289.819	2808	0.394	0.939	0.000	-0.115
	41.	⁸⁶ Kr+ ¹⁹⁷ Au	²⁸³ Mc	294.151	2844	0.392	0.943	0.000	-0.195

From the above survey, we again re-tabulated them based on the deformation of the projectile and target.

Table: Prolate-Prolate combination.

Sl	Reaction	CN	Z_PZ_T	Z_T - Z_P	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	¹² C+ ²³² Th	²⁴⁴ Cm	540	84	0.901	0.890	0.389		0.205
2.	$^{14}N + ^{232}Th$	²⁴⁶ Bk	630	83	0.886	0.893	0.425	-	0.207
3.	¹⁹ F+ ²³² Th	²⁵¹ Es	810	81	0.848	0.908	0.493	0.262	0.207
4.	$^{19}F+^{238}U$	²⁵⁷ Md	828	83	0.852	0.849	0.692	0.262	0.286
5.	$^{32}S + ^{182}W$	²¹⁴ Th	1184	58	0.701	0.878	0.612	0.208	0.232
6.	$^{32}S + ^{232}Th$	²⁶⁴ Sg	1440	72	0.758	0.921	0.669	0.208	0.207
7.	$^{36}S + ^{238}U$	²⁷⁴ Hs	1472	76	0.737	0.925	0.647	0.168	0.286
8.	$^{28}\text{Si} + ^{158}\text{Gd}$	¹⁸⁶ Pt	896	50	0.698	0.821	0.523	0.218	0.282
9.	¹² C+ ¹⁷⁸ Hf	¹⁹⁰ Pt	432	66	0.874	0.816	0.353		0.278
10.	$^{11}B + ^{235}U$	²⁴⁶ Bk	460	87	0.911	0.893	0.341	-	0.215

Table: Spherical-Prolate combination.

Sl	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	$^{16}O + ^{232}Th$	²⁴⁸ Cf	720	82	0.871	0.897	0.458	0.010	0.207
2.	$^{16}\text{O} + ^{238}\text{U}$	²⁵⁴ Fm	736	84	0.874	0.902	0.462	0.010	0.186
3.	³⁷ Cl+ ¹⁵⁴ Sm	¹⁹¹ Au	1054	45	0.613	0.823	0.564	0.011	0.270
4.	⁴⁰ Ca+ ¹⁵⁴ Sm	¹⁹⁴ Pb	1240	42	0.587	0.884	0.633	0.000	0.270
5.	⁴⁸ Ca+ ¹⁵⁴ Sm	²⁰² Pb	1240	42	0.525	0.836	0.594	0.000	0.270
6.	⁴⁸ Ca+ ¹⁶⁸ Er	²¹⁶ Ra	1360	48	0.555	0.751	0.621	0.000	0.297
7.	⁴⁸ Ti+ ¹⁵⁴ Sm	²⁰² Po	1364	40	0.527	0.851	0.645	0.011	0.272
8.	⁵⁰ Ca+ ¹⁷⁶ Yb	²²⁶ Th	1400	50	0.556	0.761	0.619	0.000	0.289
9.	⁵⁰ Ti+ ¹⁷⁰ Er	²²⁰ Th	1496	46	0.545	0.870	0.664	0.000	0.298
10.	$^{40}\text{Ca} + ^{238}\text{U}$	²⁷⁸ Cn	1840	72	0.712	0.936	0.761	0.000	0.286

Table: Prolate-Spherical combination.

					_		_		
Sl	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	⁵⁸ Fe+ ²⁰⁸ Pb	²⁶⁶ Hs	2132	56	0.564	0.937	0.796	0.259	0.000
2.	²⁰ Ne+ ²⁰⁵ Tl	²²⁵ Pa	810	71	0.822	0.876	0.494	0.364	0.000

Table: Prolate-Oblate combination.

Sl No	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	Z_T - Z_P	α	$\alpha_{ m BG}$	Χm	Def. of projectile	Def. of target
1.	⁸⁴ Kr+ ¹⁹⁸ Pt	²⁸² Fl	2808	42	0.404	0.940	0.906	0.086	-0.115
2.	$^{24}Mg + ^{178}Hf$	²⁰² Po	864	60	0.762	0.851	0.518	0.353	-0.063

Table: Spherical-Spherical combination

Sl	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	⁴⁸ Ca+ ²⁰⁸ Pb	²⁵⁶ No	1640	62	0.625	0.909	0.676	0.000	0.000
2.	⁴⁰ Ca+ ²⁰⁸ Pb	²⁴⁸ No	1640	62	0.677	0.914	0.721	0.000	0.000
3.	⁴⁸ Ca+ ¹⁴⁴ Sm	¹⁹² Pb	1240	42	0.495	0.844	0.599	0.000	0.000
4.	¹² C+ ²⁰⁴ Pb	²¹⁶ Ra	492	76	0.888	0.751	0.374		0.000

Table: Spherical-Oblate combination

SI	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	X _m	Def. of	Def. of
No								projectile	target
1.	⁴⁴ Ca+ ¹⁹⁸ Pt	²⁴² Cf	1560	58	0.636	0.900	0.681	0.000	-0.115
2.	⁸⁶ Kr+ ¹⁹⁸ Pt	²⁸⁴ Fl	2808	42	0.394	0.939	0.900	0.000	-0.115
3.	⁸⁶ Kr+ ¹⁹⁷ Au	²⁸³ Mc	2844	43	0.392	0.943	0.937	0.000	-0.195

Table: Oblate-Prolate combination.

Sl	Reaction	CN	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	$\mathbf{Z}_{\mathbf{T}}$ - $\mathbf{Z}_{\mathbf{P}}$	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	$^{28}\text{Si} + ^{160}\text{Gd}$	¹⁸⁸ Pt	896	50	0.702	0.818	0.532	-0.363	0.282
2.	$^{30}\text{Si} + ^{176}\text{Yb}$	²⁰⁶ Po	980	56	0.708	0.847	0.526	-0.236	0.289
3.	$^{34}S + ^{168}Er$	²⁰² Po	1088	52	0.663	0.851	0.575	-0.235	0.297
4.	$^{34}S + ^{186}W$	²²⁰ Th	1184	58	0.691	0.874	0.598	-0.235	0.090
5.	$^{34}S + ^{232}Th$	²⁶⁶ Sg	1440	74	0.744	0.896	0.654	-0.235	0.207
6.	¹⁶ O+ ¹⁷⁵ Lu	¹⁹¹ Au	568	63	0.832	0.823	0.412	-0.010	0.289

Table: Oblate-Oblate combination.

Sl	Reaction	CN	Z_PZ_T	Z_T - Z_P	α	α_{BG}	Χm	Def. of	Def. of
No								projectile	target
1.	$^{28}\text{Si} + ^{197}\text{Au}$	²²⁵ Np	1106	65	0.751	0.886	0.587	-0.363	-0.125
2.	¹⁶ O+ ²⁰⁹ Bi	²²⁵ Pa	664	74	0.858	0.876	0.442	-0.010	-0.011
3.	¹⁶ O+ ¹⁸⁶ Os	²⁰² Po	608	68	0.842	0.851	0.425	-0.010	0.209

From the tables, we can ascertain that prolate-prolate and spherical-prolate combinations are the most probable ones for QF.

The figures give clear information about possible parameters that can cause the occurrence of quasi-fission.

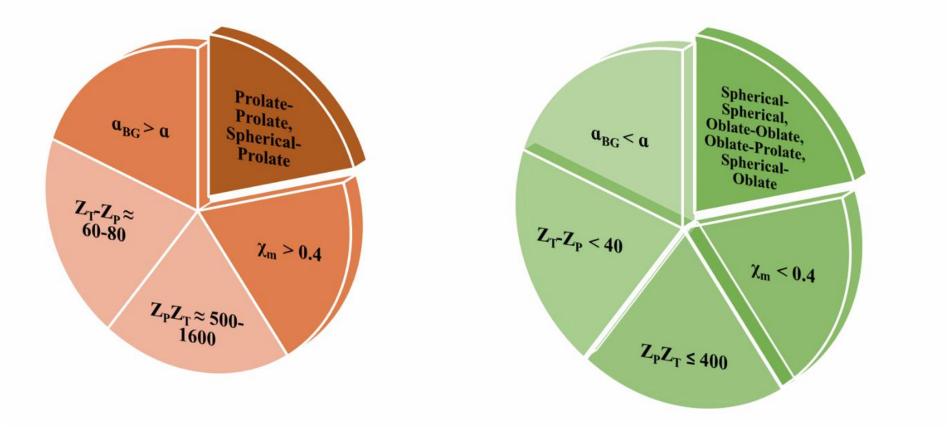


Figure: Representation of factors in favor of QF

Figure: Representation of factors against QF

A plan that can be executed abroad

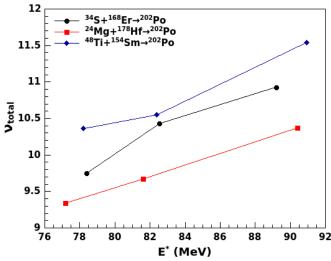


Figure: Theoretically calculated values of ν_{total} with excitation energy for CN $^{202}Po^{\ast}$

Table: Parameters of the reactions

Reaction	$\mathbf{Z}_{\mathbf{P}}\mathbf{Z}_{\mathbf{T}}$	α	$\alpha_{ m BG}$	Χm	Def. of Target	Def. of Projectile
$^{34}S + ^{168}Er$	1088	0.6633	0.8505	0.6123	Prolate	Oblate
⁴⁸ Ti+ ¹⁵⁴ Sm	1364	0.5274	0.8505	0.6641	Prolate	Prolate
²⁴ Mg+ ¹⁷⁸ Hf (unexpectedly lower value of ∨, even no QF)	864	0.7623	0.8505	0.5692	Prolate	Prolate

Both ^{34}S + ^{168}Er and ^{48}Ti + ^{154}Sm reactions have high values of Z_pZ_T (<1000), $\chi_m>0.6$, and a deformed target and projectile favouring QF. Whereas the $^{24}Mg+^{178}Hf$ reaction has lower values of Z_pZ_T and χ_m , not supporting QF So, the neutron multiplicity for $^{24}Mg+^{178}Hf$ should be higher than the other two reactions depicting QF. However, this is not the case, as shown in the figure above. The theoretically calculated values of neutron multiplicity for $^{24}Mg+^{178}Hf$ are significantly lower than those of the other two.

R. Rafiei et al., Phys. Rev. C 77, 024606 (2008)

A plan to be executed in India

Similar works have been proposed in VECC, Kolkata, to determine the probability of quais-fission.

Table: Parameters of the reactions

Downwatowa	Reactions					
Parameters	$^{16}O+^{169}Tm \rightarrow ^{185}Ir^{*}$	$^{16}O+^{165}Ho \rightarrow \ ^{181}Re^{*}$				
Z_T - Z_P	61	59				
Z_pZ_T	552	536				
α	0.8270	0.8232				
$\alpha_{\!\!\!BG}$	0.8128	0.7987				
χ	0.6630	0.6445				
$\chi_{\rm m}$	0.4073	0.4018				
Def. Of Projectile	Spherical	Spherical				
Def. Of Target	Prolate	Prolate				

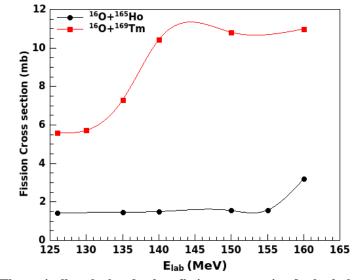


Figure: Theoretically calculated values fission cross section for both the nuclear reactions.

DD based Neutron Generator at VDG, BHU

The neutron generator based on D-D nuclear reaction has been installed at VDG Building, Department of Physics, Banaras Hindu University, Varanasi.

Fig. A Picture of the D-D based Neutron Generator

Table: Major technic Neutron Generator

DD neutron yield per pulse	≥1×109 n/p (average)
Neutron energy (DD)	~2.5 MeV (typical)
Neutron pulse duration (FWHM)	~50 ns (typical)
Minimum time interval between shots	2 minutes (minimum)
Total energy stored	10 kJ (maximum)
Total capacitance	50 μF (12.5 μF × 4 Nos.)
Overall weight of system	300 kgs (approx.)
Overall size of the system	1.2 m x 0.9 m x 0.9 m

Future Plans

- 1. To study the effect of shell closure in fusion-fission dynamics. (at IUAC, New Delhi)
- 2. Study the effects of N/Z in heavy ion fusion-fission dynamics. (at TIFR Mumbai)
- 3. Surrogate reactions a tool to study nuclear reactions without using neutrons. (at IUAC, New Delhi)
- 4. Mapping of dissipation and entrance channel effects in heavy ion induced fusion reactions. (at IUAC, New Delhi)
- 5. To determine the 58Co(n p) cross section taking 61Ni(n p) as the reference reaction using surrogate ratio method. (at IUAC, New Delhi)

- Indo Russian Bilateral research grant funded by DST-RFBR
- JINR, Dubna
- IUAC, New Delhi
- BARC, Mumbai
- TIFR, Mumbai
- VECC, Kolkata

Thanks

 $(d+D \rightarrow B^*+b \rightarrow c+C)$, let δ be the entrance channel (d+D) of this reaction. The probability that the compound nucleus B^* is formed and decayed through desired exit channel χ in a surrogate reaction, can be given using following equation.

$$P_{\delta\chi}(E^*) = \sum_{J\pi} F_{\delta}^{CN}(E^*, J, \pi) G_{\chi}^{CN}(E^*, J, \pi)$$
 (3)

Where $F_{\delta}^{CN}(E^*, J, \pi)$ is the formation probability of the desired compound nucleus (B^*) in the surrogate reaction. The application of this method can be greatly simplified by using Weisskopf-Ewing approximation (35), which states that the branching ratios of the compound nucleus are spin and parity independent, therefore $P_{\delta\chi}(E^*) = G_{\chi}^{CN}(E^*)$; since $\sum_{J\pi} F_{\delta}^{CN}(E^*, J, \pi) = 1$ (9). $P_{\delta\chi}(E^*)$ can be measured in a surrogate experiment by detecting the ejectile (b) and decay particle (c) in coincidence as $P_{\delta\chi}(E^*) = \frac{N_{\delta\chi}}{N_{\delta}\epsilon_{\nu}}$, where N_{δ} is the total number of surrogate events, $(N_{\delta \chi})$ is the number of coincidence counts b and c, and ϵ_{χ} is the detection efficiency of the particle c in the surrogate experiment. Using this decay probability the desired cross sections can be determined using following equation.

$$\sigma_{\alpha\chi}(E^*) = \sigma_{\alpha}^{CN}(E^*) P_{\delta\chi}^{CN}(E^*)$$
 (4)

We will refer the above method in Eq. (4) as the "Weisskopf-Ewing" approximation in this manuscript. There is another