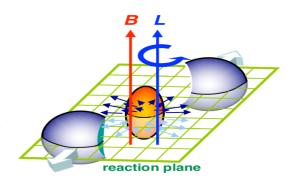
Lattice study of QCD properties under Extreme Conditions


V. Braguta

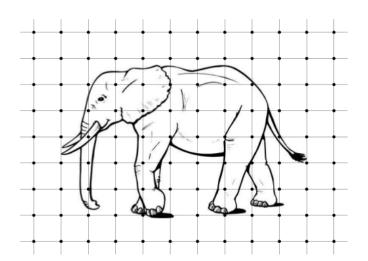
Joint Institute for Nuclear Research

India-JINR Workshop on Particle, Nuclear, Neutrino Physics and Astrophysics, NISER, Bhubaneswar

12 November, 2025

QCD under extreme conditions

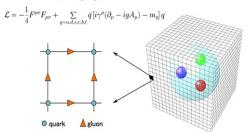
- ▶ High temperature
- ► Large density
- ▶ Intense magnetic field
- ▶ Relativistic rotation
- ▶ Strong acceleration


Theory of strong interactions (QCD)

- Degrees of freedom
 - ightharpoonup Quarks q
 - ► Gluons A
- ▶ The QCD Lagrangian is well known

$$L = -\frac{1}{4} \sum_{a=1}^{8} F_{a}^{\mu\nu} F_{\mu\nu}^{a} + \sum_{f=u,d,s,\dots} \bar{q}_{f} (i\gamma^{\mu} \partial_{\mu} - m) q_{f} + g \sum_{f=1}^{N_{f}} \bar{q}_{f} \gamma^{\mu} \hat{A}_{\mu} q_{f}$$

- Non-linear equations of motion with $g \sim 1$
- ► The main problem: calculation of observables based on the QCD Lagrangian (Millennium problem)
- ► Theoretical approaches contain assumptions with systematic errors which are difficult to estimate


Lattice QCD

- ▶ Allows to study strongly interacting nonlinear systems
- ▶ Based on the first principles of quantum field theory
- ▶ The most perspective approach due to supercomputers and new algorithms

Building lattice QCD

QCD Lagrangian

- Introduce regular cubic four dimensional lattice $N_s \times N_s \times N_s \times N_t = N_s^3 \times N_t$
- \triangleright Lattice spacing–a
- Degrees of freedom
 - ▶ Gluon fields: 3x3 matrices $U \in SU(3)$, live on links
 - **Quarks fields:** column q, \bar{q} , live on sites

Building lattice QCD

- ▶ We study QCD in thermodynamic equilibrium
- ▶ QCD partition function

$$Z = \int DU \exp(-S_G(U)) \times \prod_{i=u,d,s...} \det(\hat{D}_i(U) + m_i)$$

- ► In continuum lattice partition function exactly reproduces QCD partition function
 - Gluon contribution: $S_G(U)\Big|_{a\to 0} = -\frac{1}{4}\sum_{a=1}^8 F_a^{\mu\nu}F_{\mu\nu}^a$
 - ▶ Quark contribution:

$$\bar{q}(\hat{D}(U) + m)q \bigg|_{a \to 0} = \bar{q}(\gamma^{\mu}\partial_{\mu} + ig\gamma^{\mu}A_{\mu} + m)q$$

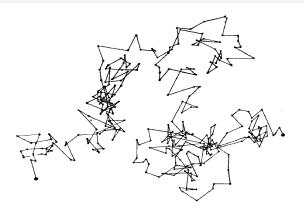
Lattice simulation of QCD

Properties

 \triangleright We calculate partition function at finite a

$$Z \sim \int DU e^{-S_G(U)} \prod_{i=u,d,s...} \det (\hat{D}_i(U) + m_i)$$

- ightharpoonup Carry out continuum extrapolation $a \to 0$
- ▶ Uncertainties (discretization and finite volume effects) can be systematically reduced
- ► The first principles based approach. No assumptions!
- ▶ Parameters: $\alpha_s(a)$ and $m_q(a)$


Lattice simulation of QCD

▶ Partition function

$$Z \sim \int DU e^{-S_G(U)} \prod_{i=u,d,s...} \det{(\hat{D}_i(U)+m_i)} = \int DU e^{-S_{eff}(U)}$$

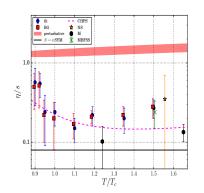
- $ightharpoonup 96 \times 48^3 \ (N_x = N_y = N_z = 48, \ N_t = 96)$
- ► Variables: $96 \cdot 48^3 \cdot 4 \cdot 8 \sim 300 \cdot 10^6$
- ► Matrices: $100 \cdot 10^6 \times 100 \cdot 10^6$
- ightharpoonup To calculate Z one uses Monte Carlo approach
- ▶ HMC: stochastic process which gives $p(U) \sim e^{-S_{eff}(U)}$

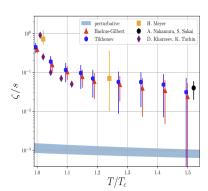
Hybrid Monte Carlo algorithm

- ▶ HMC can be considered as Brownian motion of the system
- ► Accept/reject step at the end of the trajectory
 - if $S_{eff}(U_{n+1}) < S_{eff}(U_n)$ the U_{n+1} is accepted
 - otherwise U_{n+1} is accepted with $p \sim e^{-[S_{eff}(U_{n+1}) S_{eff}(U_n)]}$
- ► Simulation of quantum system!
- ▶ For large number of the trajectories $p(U) \sim e^{-S_{eff}(U)}$

Applications

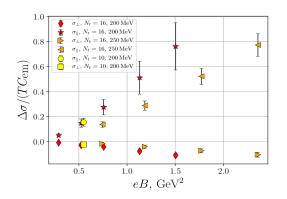
- Spectroscopy
- ▶ Matrix elements and correlations functions
- ► Thermodynamic properties of QCD
- ► Transport properties of QCD
- ▶ Phase transitions
- Nuclear physics
- ▶ Properties of QCD under extreme conditions (magnetic field, baryon density, relativistic rotation,...)
- ► Topological properties of QCD
- **>** ...


Lattice simulation of QCD in JINR


- ► Supercomputer "Govorun"
- ▶ SU(2) and SU(3) codes: CPU, CPU+GPU, multi-GPU
- ► Simulation with 2 or 2+1 dynamical quarks
- ▶ Wilson and Staggered stout fermions

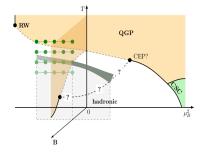
QCD properties under extreme conditions

- ► Transport and anomalous transport phenomena
- ► Non-zero baryon density
- QCD with non-zero chiral density
 V.V. Braguta, Phys.Rev.D93(2016) 034509; JHEP06(2015) 094;
 N. Astrakhantsev, Eur.Phys.J.A57(2021), 15
- ► Strong Magnetic field
- ► Relativistic rotation
 Artem Roenko, 12.11 at 14.30
- ► Strong acceleration

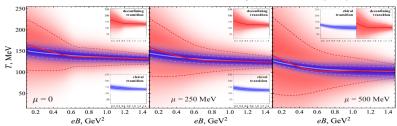

Transport properties: shear and bulk viscosities

- ► Results for η/s are close to N=4 SYM $\frac{\eta}{s} = \frac{1}{4\pi}$ N. Astrakhantsev et.al., JHEP 04 (2017) 101
- Peak of the ζ/s at $T=T_c$ N. Astrakhantsev et.al., Phys.Rev.D 98 (2018) 5, 054515
- ▶ Lattice results deviate from perturbation theory
- ► Nonpertubative QGP!

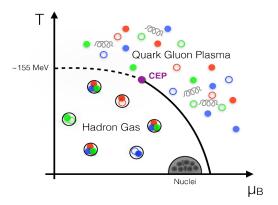
Conductivity of QGP in strong magnetic field

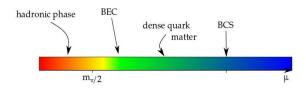

- Electrical conductivity of QGP with 2+1 quarks at physical masses
 N. Astrakhantsev et.al. Phys.Rev.D102(2020), 054516;
 G. Almirante, Phys.Rev.D 111 (2025) 3, 034505
- ► Conductivity along magnetic field σ_{\parallel} increases \Rightarrow CME
- ► Conductivity perpendicular to magnetic field σ_{\perp} decreases \Rightarrow magnetoresistance
- ▶ QGP in magnetic field becomes anisotropic


QCD at finite (T, μ_B, eB)


First study of QCD phase transition in (T, μ_B, eB) space

V. Braguta et.al., Phys.Rev.D100(2019), 114503

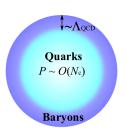

- Simulation at imaginary μ_B and physical quark masses
- ▶ Inverse magnetic at finite density
- ► Study of EoS $p = p(T, \mu_B, eB)$ N. Astrakhantsev, et.al., Phys.Rev.D109(2024), 094511


Hunting for the critical end point

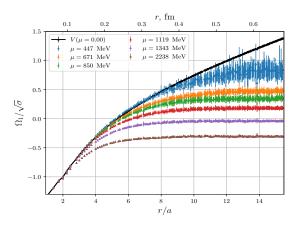
- ► The width of the chiral transition decreases with μ Zero transition width \Rightarrow first order phase transition
- \blacktriangleright Our estimation is $(T_c^{CEP},\mu_B^{CEP})=(100(25),800(140))\,\mathrm{MeV}$

V. Braguta et.al., Phys.Rev.D100(2019), 114503

QCD properties at high baryon density

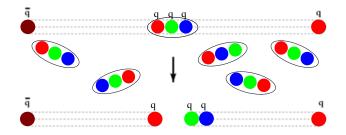

Observation of the quarkyonic phase

L.McLerran, R.D. Pisarski, Nucl. Phys. A796 (2007)

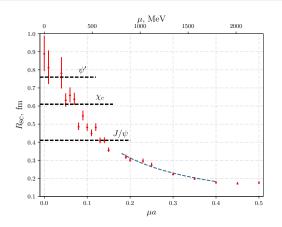

Lattice simulation SU(2) at finite μ_B
 V. Braguta et al., Phys.Rev.D94(2016) 114510

N. Astrakhantsev et al., Phys.Rev.D102(2020) 074507

- ▶ Formation of the Fermi sphere $n_q \simeq n_{SB}$
- ▶ Baryons on the surface $\Sigma \sim \mu^2$
- Confinement
- ► The chiral symmetry is restored



String breaking in dense matter


► The larger the baryon density the smaller string breaking distance N. Astrakhantsev, JHEP 05(2019) 171

String breaking in dense QCD

- ▶ String breaking in dense matter creates $\bar{Q}q$ and Qqq
- ▶ Contrary to string breaking in vacuum: $\bar{Q}q$ and Qq

Dissociation of charminia in dense matter

- \triangleright String breaking at distance R_{SC}
- ▶ Dissociation of charminia might take place before the deconfinement
- ▶ Dissociation of charminia can be seen at NICA

Typical accelerations

Earth $\sim 2 \cdot 10^{-29} \text{ MeV}$

Sun $\sim 6 \cdot 10^{-28} \text{ MeV}$

Neutron star $\sim 2 \cdot 10^{-16} \text{ MeV}$

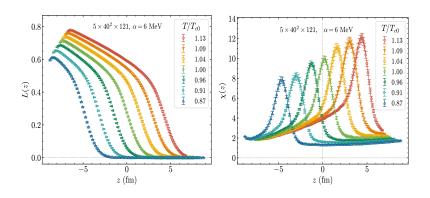
HIC experiments, vicinity of black hole horizon $\sim 1000 \text{ MeV}$

HIC experiments allow to study physics close to black hole horizon

Accelerated observer and QCD

- ► HIC is complicated process
- ▶ Toy model: uniformly accelerated observer $(\vec{a} \parallel \hat{z})$ homogeneous magnetic field

$$\frac{d^2z}{dt^2} = \alpha = const$$


► The trajectory:

$$t(\tau) = \frac{1}{\alpha} \sinh \alpha \tau, \ z(\tau) = \frac{1}{\alpha} \cosh \alpha \tau$$

- ► Aim: investigation of gluodynamics/QCD in the accelerated frame
- ► Influence of non-inertia frame can be reduced to external gravitational field
- Gluodynamics/QCD in external gravitational field

Accelerated gluodynamics

- Spatially separated confinement and deconfinement phases
- ▶ We observe: spatial confinement/deconfinement phase transition in accelerated gluodynamics

V. Braguta, report at Lattice 2025, 07.11

Thank you!