Studying Nucleon Spin Structure at the Spin Physics Detector (SPD)

Amaresh Datta (JINR)
(On behalf of the SPD collaboration)

India-JINR Workshop

Nov 11, 2025

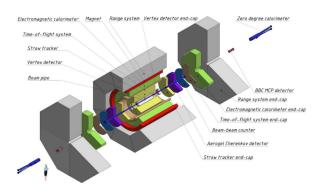
Plans for the Presentation

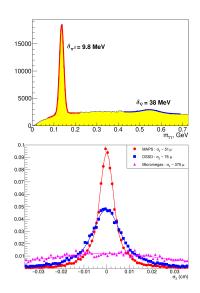
- Physics goals and detector system
- Focus on nucleon spin structure
- Measurements, challenges, expectations
 - Charmonia
 - Oirect Photon
 - Open-charm meson

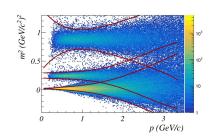
SPD Stage II: Physics

- Primary focus: accessing gluon PDFs
 - Unpolarized gluon PDF
 - Question Gluon Helicity PDF
 - Gluon transverse momentum dependent (TMD) PDF (Sivers, Boer-Mulders)
 - Transversity and tensor polarized gluon in deuteron
- Test of QCD factorization
- Charmonia production mechanism

SPD Stage II: Detector

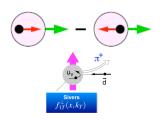



Figure 1: SPD detector in stage II: SPD TDR


- MAPS/DSSD based vertex detector : secondary vertex reconstruction : resolution $\sim 50~\mu \mathrm{m}$
- Range System : hadronic calorimeter, μ/h separation

- Event rate at peak L and \sqrt{s} : ~ 3 MHz
- Straw Tracker $\delta \sim$ 240 μ m
- Electromagnetic calorimeter (ECAL) $(\frac{\delta_E}{E} = \frac{5\%}{\sqrt{E}} + 1\%)$
- Time of flight (TOF) for PID ($\delta_t \sim 50$ ps), π/K separation upto 1.5 GeV/c
- Focusing RICH in end-caps, extend π/K separation up to 5.5 GeV/c

Detector Performances



- Clockwise from lower left (SPD TDR) :
- Resolution of reconstructed D⁰ vertex : $\delta_{z}\sim$ 50 $\mu{\rm m}$ for MAPS
- Invariant mass of 2-photons : $\delta_m^{\pi^0} \sim 10 \text{ MeV}$
- TOF performance:provides a 3σ separation of π/K up to 1.5 GeV/c
- ullet Additionally:in the straw tracker, $rac{\delta_{PT}}{2T}\sim 2\%$ for 1GeV/c tracks (magnetic field $\sim 1\ T$)

Probing Gluon Spin Distributions at the SPD

	Unpolarized	Circular	Linear		
Unpolarized	g(x)		$h_1^{\perp g}(x, k_T)$		
	density		Boer-Mulders function		
Longitudinal		$\Delta g(x)$	Kotzinian-Mulders		
		helicity	function		
Transverse	$\Delta_N^g(x,k_T)$	Worm-gear	$\Delta_T g(x)$		
	Sivers function	function	transversity (deuteron only),		
			pretzelosity		

Figure 2: Various spin distributions of gluons that will be accessible via cross-section and asymmetry measurements at the SPD

- Unpolarized gluon distributions (g(x))
- Gluon helicity PDF $(\Delta g(x))$
- TMD gluon spin distributions i.e. Sivers $(\Delta_N^g(x, k_T))$, Boer-Mulders $(h_1^{\perp g}(x, k_T))$
- Transversity $(\Delta_T g(x))$: deuteron

Gluon Helicity $\Delta g(x)$

Important to understand proton spin *Phys.Rev.Lett.* 113 (2014) 1, 012001 *EIC* as a whole (spin puzzle)

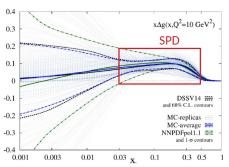


Figure 3: Gluon helicity distribution from DSSV group: Phys. Rev. D 100 114027(2019). Highlighted region shows where SPD will make a major impact

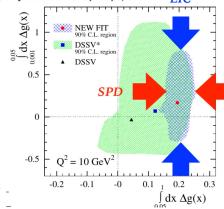


Figure 4: Truncated moments of $\Delta g(x)$ illustrate SPD impact on high-x and future EIC impact in low-x region

Gluon TMD: Sivers

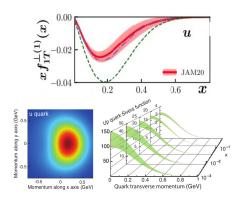


Figure 5: Extracted quark Sivers as functions of x and k_T [above : Phys. rev. D 102, 054002, below : EIC white paper]

- Sivers function can be described as a corrleation between parton k_T and hadron transverse spin
- Transverse single spin asymmetries
 (A_N) are sensitive to the gluon Sivers function
- Extracted in generalized parton model(GPM), color gauge invariant GPM(CGI-GPM) descriptions of partonic structure
- Unlike gluon helicity PDF, there has not been extraction of gluon Sivers from global analysis, SPD can provide much needed data points

SPD: Prominent Measurements

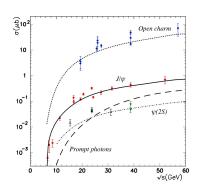


Figure 6: Partonic sub-process cross-sections from p + p vs. collision energy : SPD CDR

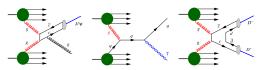


Figure 7: Sub-process diagrams

- Flagship probes at SPD accessing gluon content :
 - gluon fusion to charmonia $(J/\Psi, \Psi(2S), \chi_{c_1/c_2})$, primarily via dimuon decay channel
 - quark-gluon to prompt-photons, cleanest channel for interpretation
 - gluon fusion to open-charm mesons, highest statistics but also very high background

Various SPD Probes

	$\sigma_{27\mathrm{GeV}}$,	σ _{13.5 GeV} ,	N _{27 GeV} ,	N _{13.5 GeV}
Probe	nb (×BF)	nb (×BF)	10 ⁶	10 ⁶
Prompt- $\gamma(p_T > 3 \text{ GeV/c})$	35	2	35	0.2
J/ψ	200	60		
$ ightarrow \mu^+ \mu^-$	12	3.6	12	0.36
$\psi(2S)$	25	5		
$ ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01
$ ightarrow \mu^+ \mu^-$	0.2	0.04	0.2	0.004
$\chi_{c1} + \chi_{c2}$	200			
$\to \gamma J/\psi \to \gamma \mu^+ \mu^-$	2.4		2.4	
η_c	400			
$ ightarrow par{p}$	0.6		0.6	
Open charm: $D\overline{D}$ pairs	14000	1300		
Single D-mesons				
$D^+ \to K^- 2\pi^+ (D^- \to K^+ 2\pi^-)$	520	48	520	4.8
$D^0 \to K^- \pi^+ (\overline{D}^0 \to K^+ \pi^-)$	360	33	360	3.3

Figure 8: Expected statistics for probes for one year of data at SPD

Charmonia Measurements

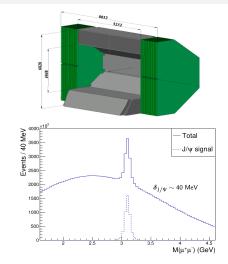


Figure 9: Above: Range System at SPD Below: di-muon invariant mass spectra for J/Ψ : SPD TDR

- Productions are dominated by gg fusion at SPD kinematics
- Reconstructed from di-muon decay channels using Range System as muon identifier
- Hadronization poorly understood (various models: CSM, CEM, NRQCD)
- TMD factorization not always applicable
- J/Ψ most abundant ~ 12 M events expected in one year of data in this channel

J/Ψ Double Helicity Asymmetry $(A_{LL}^{J/\Psi})$

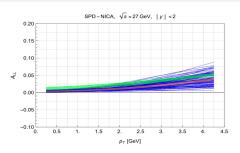


Figure 10: Estimated $A_{LL}^{J/\Psi}$ for different PDF replicas (brown and green bands are uncertainties for scale and LDME variations): Physics 2023, 5(3), 672-687

- $A_{LL}^{J/\Psi} \approx \frac{\Delta g(x_1)}{\sigma(x_1)} \otimes \frac{\Delta g(x_2)}{\sigma(x_2)} \otimes \hat{a}_{LL}^{gg \to J/\Psi + x}$
- Sensitive to gluon helicity PDF
- SPD kinematic will probe $x_{Biorken} \sim 0.03 0.5$

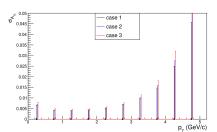


Figure 11: Projected statistical uncertainties for $A_{LL}^{J/\Psi}$ measurements from one year of recorded data at the SPD in p_T for three different selection criteria of muon polar angle θ_μ : SPD CDR

Impact of SPD $A_{IJ}^{J/\Psi}$ Measurements

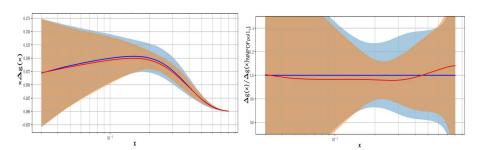


Figure 12: Estimated impact of $A_{LL}^{J/\Psi}$ measurements at the SPD on the gluon helicity distribution $\Delta g(x)$. Blue and red lines show the mean of the NNPDFpol1.1 replica sets before and after the re-weighting, respectively. Light blue and light orange bands show the corresponding standard deviation uncertainties (Physics 2023, 5(3), 672-687).

SPD impact in $0.1 \le x \le 0.6$ range

J/Ψ Single Transverse Spin Asymmetry $(A_N^{J/\Psi})$

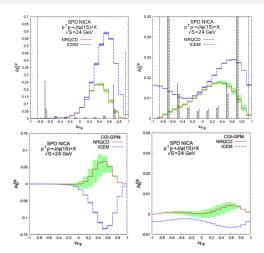


Figure 13: $A_N^{J/\Psi}$ predictions for SPD kinematics (and projected uncertainties for one year of recorded data) [Phys. Rev. D *104*, 016008]

- Top to bottom: GPM and CGI-GPM. Left to right: SIDIS1 and D'Alesio parameterization of Sivers Function
- Various combinations of PDFs and hadronization models illustrate strong model dependence
- For example, asymmetry predictions using SIDIS1 and d'Alesio params. are different by an order of magnitude
- SPD measurements and precision can be crucial in restricting such model dependence in future

Other Charmonia Probes

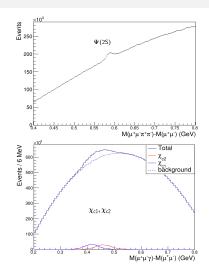


Figure 14: Di-muon invariant mass spectra for various charmonia probes : SPD CDR

- $\Psi(2S)$ via di-muon decay channels $(\mu^+\mu^-\pi^+\pi^-, \mu^+\mu^-)$: ~ 700 K events/year
- χ_{c1}, χ_{c2} via di-muon decay channel $(\gamma \mu^+ \mu^-)$: \sim 2.4 M events/year
- Double J/Ψ productions : both J/Ψ into di-leptonic decay channels ~ 100 events/year
- Limited η_c measurements could also be possible (of special ineterest as TMD factorization is proven for this probe)

Prompt Photon Double Helicity Asymmetry (A_{LL}^{γ})

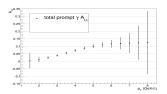
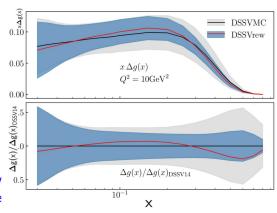



Figure 15: Predictions of A_{LL}^{γ} as function of transverse momentum p_T (Physics 2023, 5(3), 672-687)

Estimates (right plot) show that measurements at the SPD can reduce uncertainties of gluon heicity at large x by $\sim 1/2$

of gluon heicity at large x by Figure 16: Impact of SPD A_{LL}^{γ} (Physics 2023, $\sim 1/2$ 5(3), 672-687) : Vogelsang, Sassot, Borsa

Prompt Photon Transverse Single Spin Asymmetry (A_N^{γ})

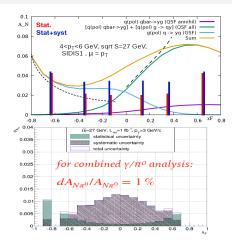


Figure 17: Above: Predicted A_N^{γ} vs. x_F from V. Saleev, A. Shipilova with projected uncertainties for one year of data at SPD Below: Estimation of uncertainty due to background: SPD CDR

- Prompt photon is an 'clean' channel as it does not include hadronization
- Particularly sensitive to gluons in the backward (-ve rapidity) region production
- Challenge to remove stray photons from neutral light meson (π^0, η) decays
- Uncertainties arising from photons from π^0 decays are estimated as systematic on lower left plot

Open Charm Measurements

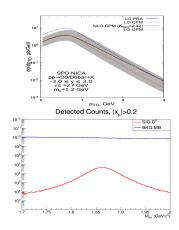


Figure 18: Above: inclusive D^0 , \bar{D}^0 cross-section prediction (A. Karpishkov), Below: Projected π -K invariant mass spectra for one year of data at the SPD

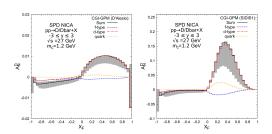


Figure 19: Predicted A_N at SPD kinematics (Prog. Part. Nucl. Phys. 2021, 119, 103858)

- \bullet Productions dominated ($\sim70\%)$ by gg fusion
- Expected high A_N at $x_F \ge 0.2$
- Detected via hadronic decay channel at SPD
- Challenging due to very high combinatorial background $(S/B \sim 10^{-5})$

Neutral D Transverse Single Spin Asymmetry at the SPD

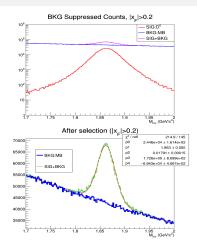


Figure 20: Above: Projected π -K invariant mass spectra after selection criteria are applied Below: $D^0 \to \pi^+ K^-$ fit to signal and background

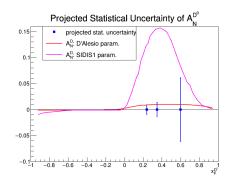


Figure 21: Predicted inclusive A_N^D at SPD kinematics with projected statistical uncertainties δ_N^{stat} for D^0 (Physics 2023, 5(3), 672-687)

Expected statistical precision could be crucial to (dis)favour certain GSF models decisive

NICA: A Bird's Eye View

Figure 22: NICA complex with ongoing constructions

Summary and Outlook

- Spin Physics Detector (SPD) at the NICA facility will be a unique facility focusing on the unpolarized and polarized gluon distributions inside protons and deuterons from p + p and d + d collisions up to $\sqrt{s} = 27$ and 13.5 GeV respectively
- In the first stage, SPD will probe several interesting unpolarized and spin-dependent effects from p+p and d+d at low ($\sqrt{s_{NN}}=5-10$ GeV) energies
- In the final stage, SPD measurements (of charmonia $(J/\Psi, \Psi(2S), \chi_c)$, prompt-photon and open-charm (D mesons)) will be sensitive to
 - unpolarized gluon PDF
 - gluon helicity
 - gluon TMD (Sivers, Boer-Mulders)
 - gluon transversity in deuteron
- SPD contributions to the polarized gluon distributions will be complementary to similar existing and future collider (RHIC, EIC) and fixed target (AFTER, LHC-Spin) experiments

Thank You

Backup

SPD Kinematics

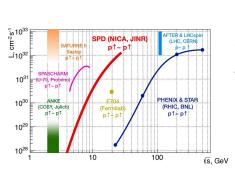


Figure 23: Luminosity vs. energy : SPD CDR

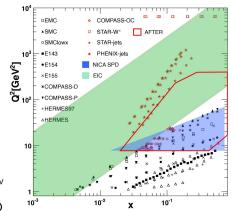


Figure 24: Kinematic coverage for major probes at the SPD: charmed mesons, high- p_T photons and charmonia: CDR_{SI}

Bayesian Re-weighting

- Each data point is used with its error (assumed Gaussian) to create MC replicas in the multi-Gaussian data space (virtual ensemble of data sets)
- PDF sets (u,d,s, anti-quarks, g etc.) are extracted from EACH data replica
- The average gives the central value and the standard deviation is the natural uncertainty of the PDF

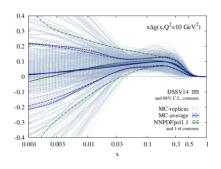


Figure 25: Phys. Rev. D 100, 114027 (2019)

Re-weighting Technique to Quantify Impact of New A_{LL}

- Once extracted, the set of replica PDFs can be used to measure the impact of a new asymmetry measurement WITHOUT doing full global analysis again
- "The Bayesian reweighting is fully equivalent to a refit including the additional set of data ..."
- Example shows the impact of STAR mid rapidity dijet result on the central value and the uncertainty band of the gluon helicity

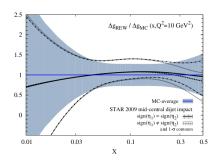
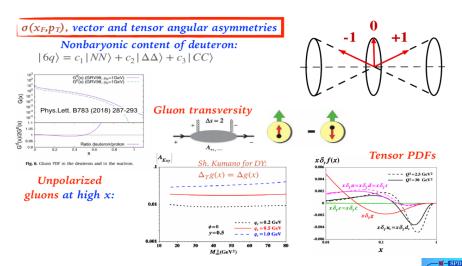



Figure 26: Phys. Rev. D 100, 114027 (2019)

Deuteron at SPD

