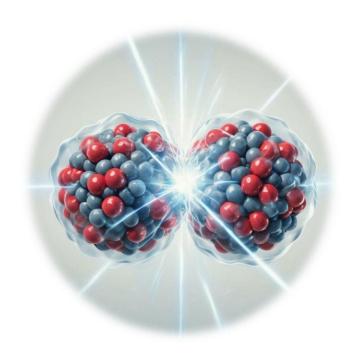
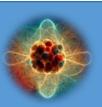
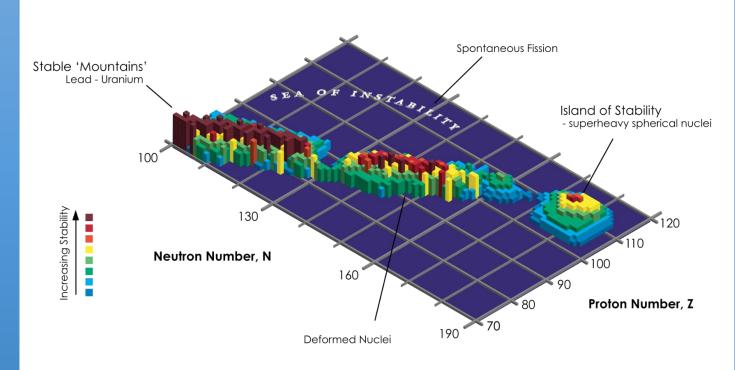
"Joint Institute for Nuclear Research"
Flerov Laboratory of Nuclear Reactions *Dubna, Russia*


GRAND and SHELS facilities: performance and experimental results

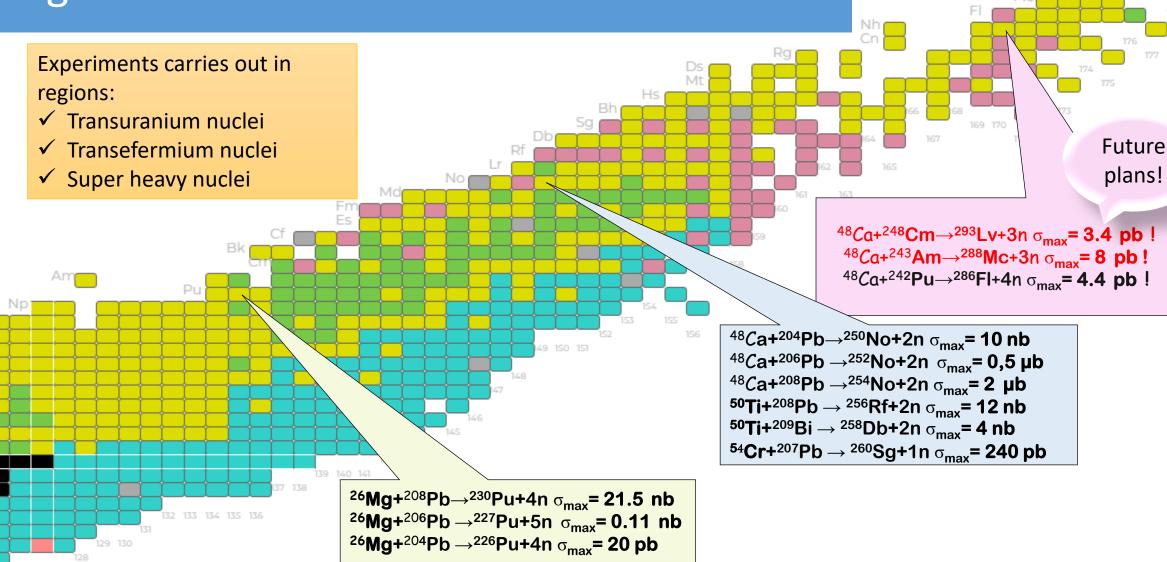
Speaker: Alyona Kuznetsova


Outline

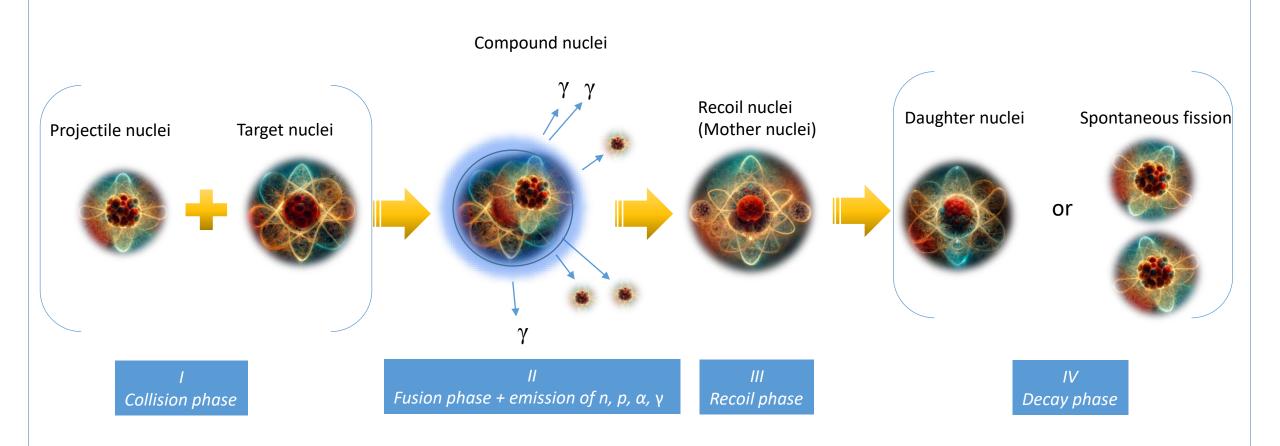
- Main goals of experiments
- Regions of interest
- Facilities review
- Detection systems and their characteristics
- ☐ Overview of 2023-2025 experiments
- ☐ Future plans



Main goals of experiments


- Complete fusion reactions with heavy ions
- Synthesis of new isotopes.
- \triangleright Decay properties and structure of heavy and super heavy nuclei using α -, β -, γ spectroscopy.
- ➤ The dynamic of spontaneous fission process
- Multinucleon transfer reactions

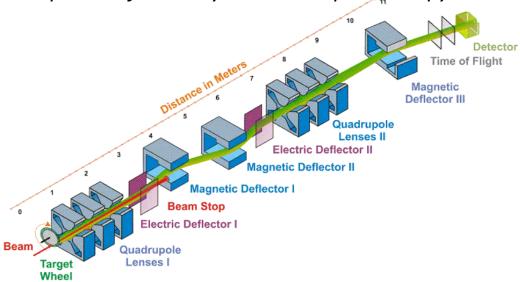
Devaraja H.M. "Systematic studies to produce heavy above-target nuclides in multinucleon transfer reactions"



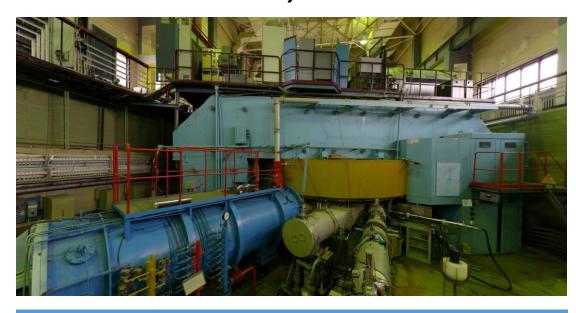
Region of interest


125 126 127

Complete fusion and decay process



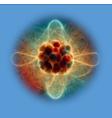
SHELS & U-400


Separator SHELS

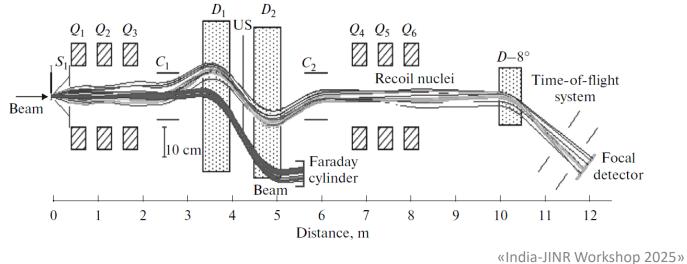
Separator for Heavy Elements Spectroscopy

- SHELS^a is a velocity filter designed to separate recoil nuclei from the primary beam. The separator is 12 m long and has a QQQEDDEQQQD scheme.
- ☐ The transmission efficiency of SHELS reaches 45%, depending on the type of reaction.
- ☐ The U-400 cyclotron provides a beam of 0.5–1.5 pμA (from Li to Bi) directed onto the target wheel.

U-400 cyclotron



- U-400^b is designed for production of accelerated ions in the range of $A=4 \div 209$ with $E=3 \div 29$ MeV/nucleon.
- ☐ Cyclotron is 4m in diameter, D=4 m, with K=650 energy factor.


^a A.V. Yeremin, A.G. Popeko, O.N. Malyshev et al. Physics of Particles and Nuclei Letters, 2015, Vol. 12, No. 1, pp. 35–42.

bhttps://flerovlab.jinr.ru/u400-accelerator-complex/

SHELS

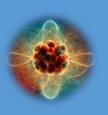
the principal components of the separator.

Dipole Magnets

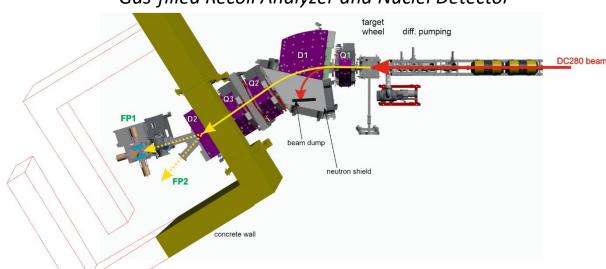
Effective length: 59.7 cm;
Dipole aperture: 13.5 cm;
Maximum field strength: 0.8 T;
Rated deflection angle: 21.8".

Quadrupole Lenses

Maximum field gradient: 13 T/m;
Effective length: 38 cm;
Aperture radius: 10 cm.


Effective length: 65.7 cm; Distance between plates: 10 - 20 cm; Maximum field gradient: 40 kV/cm; Rated deflection angle: 8°.

Beam line and target box

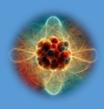

7

GRAND & DC-280

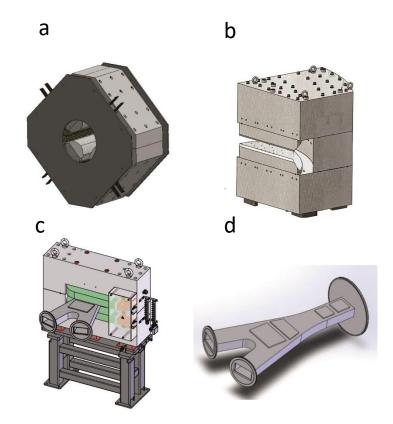
Separator GRAND


Gas-filled Recoil Analyzer and Nuclei Detector

- GRAND^{a,b} is a new gas-filled recoil separator created for The Super Heavy Element Factory ^c.
- GRAND is intended for the study of SHE decay spectroscopy and chemical properties.
- ^a A.A. Kuznetsova // Bulletin of the Russian Academy of Sciences: Physics, 2023, Vol. 87, No. 8, pp. 1105–1111
- ^bA.V. Yeremin, et al. //PEPAN Letters, Vol. 21, No. 3, 2024. pp. 518–525
- ^d Gulbekian G. G., Dmitriev S. N., and. Itkis M. G, Phys. Part. Nucl. Lett. 16, 866 (2019).


^c https://flerovlab.jinr.ru/she-factory/

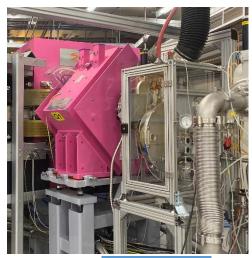
DC-280 cyclotron


- The high-intensity universal DC-280^d cyclotron (A \leq 238, E \leq 10 MeV/A, I \leq 20 p μ A).
- The Super Heavy Element Factory will increase the overall production of super heavy nuclei by one-two orders of magnitude with respect to presently achieved rates. This will enable the studies of nuclear /atomic structure of heaviest atoms and open the door to the discoveries of new elements above Z=118 and of isotopes closer to the predicted shell closure at N=184.

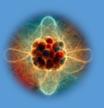
GRAND

Ν

D



Elements of the separator: (a) quadrupole lens; (b) dipole magnet with angle of rotation 31.6°; (c) dipole magnet with angles of rotation ±15.2°; and (d) vacuum chamber into which particles are fed for different detector chambers.



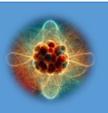
Comparison of two targets 480 and 240 mm.

Target box

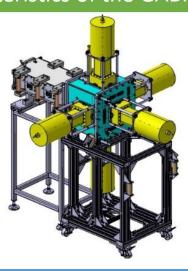
GABRIELA for nuclear spectroscopy

Gamma Alpha Beta Recoil Investigation with the Electromagnetic Analyser

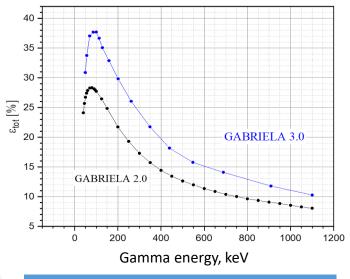
- Complex of Si-detectors
- Ge-detectors (Clovers)


Time-Of-Flight system

❖ 2 foils and 4 MCP (70x90 mm²)



❖ The concrete wall is designed to protect the detectors from radiation.


Detectors of GABRIELA

Characteristics of the GABRIELA:

Focal Si-detector (DSSSD)

• Size: 100x100mm² or 128x128 strips;

• 16384 pixels;

• Thickness: 500μm.

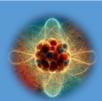
Tunnel Si-detectors (DSSSD)

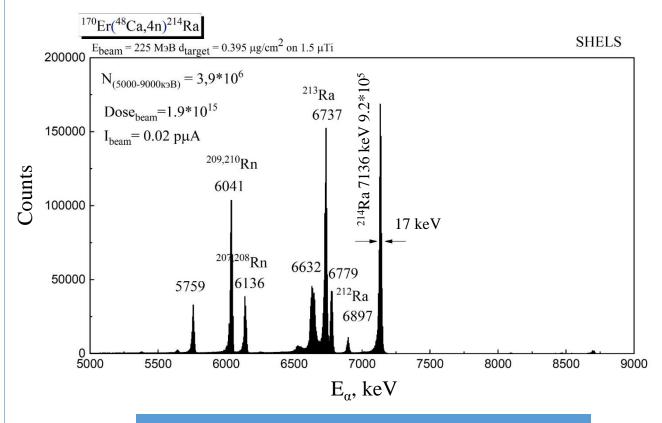
Size: 50x60mm²,
8 plates;

• Thickness: 700 μm;

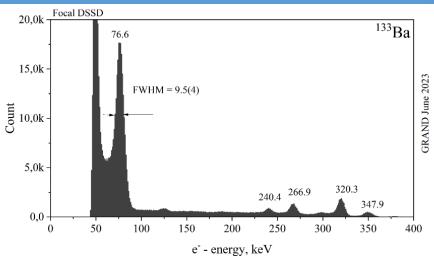
DSSD	FWHM [keV]	Thresholds [keV]
Focal plane 100x100 mm² 128x128 strips Thickness: 500 μm	10.8±0.6 keV - 320 keV electrons; 16.5±0.8 keV - 7.92 MeV alphas	40-60
8 Tunnel 50x60 mm² 16x32 strips Thickness: 700 μm (CE)	14.4±1.2 keV - 320 keV electrons 120±11 keV - 7.92 MeV alphas	60-100

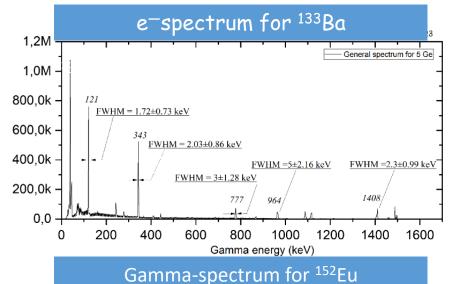
5 Ge-detectors (HPGe)

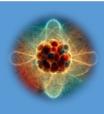

- Clovers (a 4-crystal diameter 100 mm, length 70 mm)
- BGO
- A low neutron background is required!


5 Clovers (HPGe)

1.7±0.7 keV – 0.1 MeV gamma 2.3±1.0 keV –1 MeV gamma

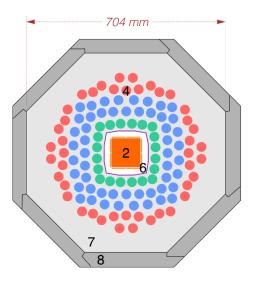

«India-JINR Workshop 2025»

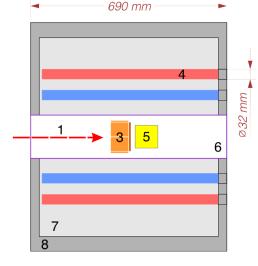

Energy resolution



 α -spectrum of nuclei synthesized in the test reaction 48 Ca+ 170 Er

Spontaneous fission of SHE with SFiNx¹


SFiNx^a


Spontaneous Fission, Neutrons and X-rays

Box of Sidetectors

The legend:

1 – evaporation residues

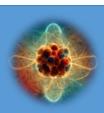
2 – focal-plane 128×128-strip
DSSD

3 - tunnel 32×16-strip DSSDx8

4 – 116 ³He-counters (7 atm)

5 – 9 CLLBC scintillators

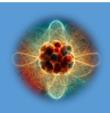
6 – vacuum chamber

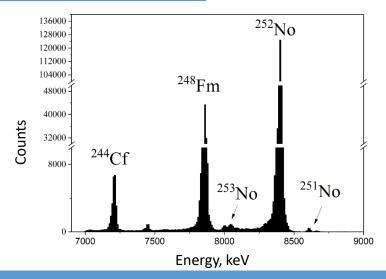

7 – moderator

8 – shield

^a Isaev A. V. et al. The SFiNx detector system PEPAN Letters 19 (2022) P. 37–45

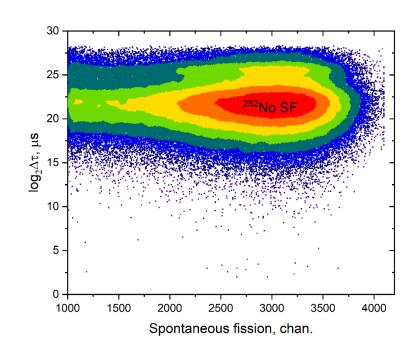
Neutron detection efficiency $\varepsilon_n = 55\pm1\%$

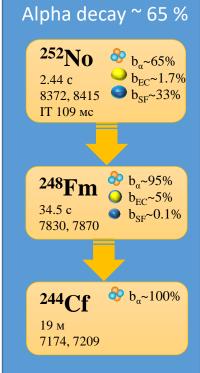

Experiments for 2023-2025 years


Year	Reactions	Compound nuclei	Purpose of the experiment	Set-up + detector system
2023	¹³⁶ Xe+ ²³⁸ U	-	MNT reactions	SHELS+SFINX
	²⁶ Mg+ ²³⁸ U	²⁶⁴ Rf	SF neutrons, MNT reactions	SHELS+SFINX
	⁴⁰ Ar+ ²⁰⁶ Pb	²⁴⁶ Fm	SF neutrons	SHELS+SFINX
	⁴⁸ Ca+ ²⁰⁸ Pb	²⁵⁶ No	Testing detection system	GRAND+GABRIELA
	⁵⁴ Cr+ ²⁰⁷ Pb	²⁶¹ Sg	SF neutrons, MNT reactions	SHELS+SFINX
	⁴⁸ Ca+ ²⁰⁴ Pb	²⁵² No	α -, β -, γ -spectroscopy + SF, measure a cross section for EvR	GRAND+GABRIELA
	²⁶ Mg+ ^{204,206,208} Pb	^{230,232,234} Pu	α -, β -, γ -spectroscopy + SF, measure a cross section for EvR	GRAND+GABRIELA
2024	⁴⁰ Ar+ ²⁰⁹ Bi	²⁴⁹ Md	SF neutrons, delayed nuclear fission (βDF)	SHELS+SFINX
	⁴⁸ Ca+ ²⁰⁶ Pb	²⁵⁴ No	Testing big target	GRAND+GABRIELA
	⁴⁸ Ca+ ²⁴² Pu	²⁹⁰ FI	SHE study and chemical, measure a cross section for EvR	GRAND+GABRIELA+CryoDetector
	⁵⁴ Cr+ ²⁰⁷ Pb	²⁶¹ Sg	SF neutrons, MNT reactions	SHELS+SFINX
2025	²² Ne+ ²³⁸ U	²⁶⁰ No	SF neutrons, MNT reactions, measure a cross section for EvR	SHELS+SFINX
	²⁶ Mg+ ²³⁸ U	²⁶⁴ Rf	SF neutrons, MNT reactions, measure a cross section for Ev	SHELS+SFINX
	⁴⁸ Ca+ ²⁴² Pu	²⁹⁰ FI	SHE study and chemical, measure a cross section for EvR	GRAND+GABRIELA+CryoDetector
	⁵² Cr+ ²⁰⁷ Pb	²⁵⁹ Sg	SF neutrons, MNT reactions in progress now	SHELS+SFINX
			«India-IINR Workshop 2025»	14

«India-JINR Workshop 2025»

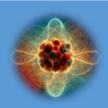
²⁵²No

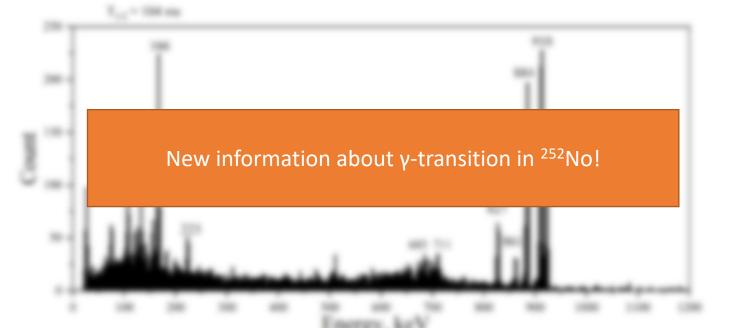

Reaction ⁴⁸Ca+²⁰⁶Pb


- tests of a new big target with a diameter of 480 mm and a thickness of 690 $\mu g/sm^2$.
- Integral flux was collected of $9.4 \cdot 10^{18}$ ions by the intensity beam $\leq 6 \text{ p}\mu\text{A}$.

Statistic of isotopes ²⁵²No:

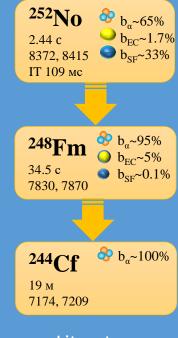
- ✓ ER- α correlations ~ 3.5·10⁵
- ✓ ER-SF(γ) correlations ~ 1,7·10⁵ → 1-1.5 fissions/s of ²⁵²No! The half life time was measured to be $T_{1/2}(SF) = 2.46$ s



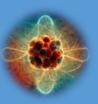


Literature data

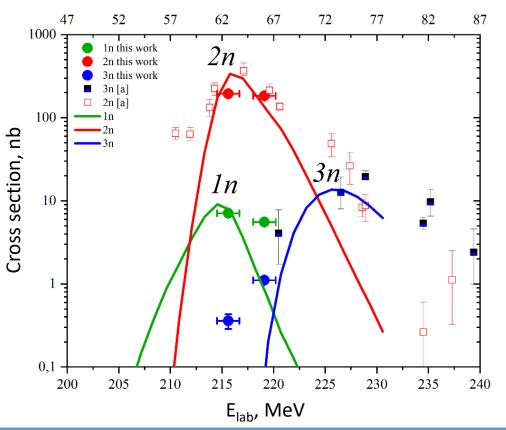
Gamma spectroscopy for ^{252m}No



Large statistic for the gamma analyze


Gamma spectrum for the isomeric state in 252 No with $T_{1/2} = 104$ ms.

Analysis in progress!



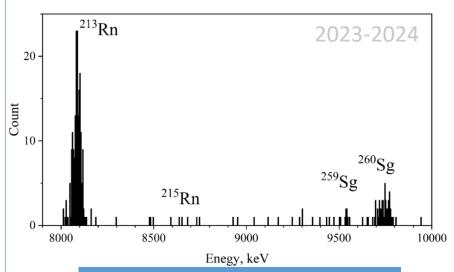
Literature data

Fusion-evaporation cross sections for the reaction ⁴⁸Ca+²⁰⁶Ph

Reaction 48 Ca+ 206 Pb \rightarrow 252 No+2n



[a] Belozerov et. Al., European Physical Journal, A 16 (2003) 447 [b] Karpov A. V. et all, Phys. Part. Nucl. Lett., 2018. V. 15. P. 247. 252No $b_{\alpha}\sim65\%$ 2.44 c $b_{BC}\sim1.7\%$ 8372, 8415 $b_{SF}\sim33\%$ IT 109 Mc

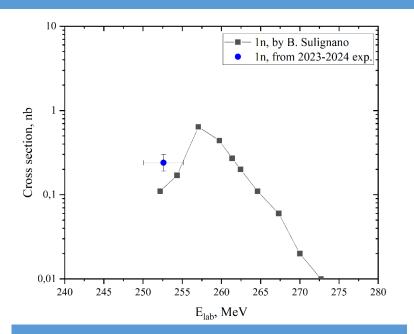

248Fm $b_{\alpha}\sim95\%$ $b_{BC}\sim5\%$ 34.5 c $b_{SF}\sim0.1\%$ 7830, 7870 $b_{SF}\sim0.1\%$

Experimental cross-section for 1n, 2n, 3n evaporation channels in complete fusion reaction 48 Ca+ 206 Pb. Dots — the experiment data, dashed lines — theoretical estimates, which were made by NRV [b].

data

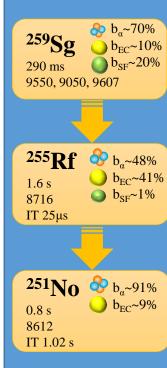
Reaction $^{54}\text{Cr}+^{207}\text{Pb} \rightarrow ^{261}\text{Sg}+1\text{n}$

 α -spectrum for the reaction ⁵⁴Cr+²⁰⁷Pb.


Statistic of isotopes ²⁶⁰Sg for 2 exp.:

- ✓ ER-α correlations ~ 50
- ER-SF correlations ~ 358

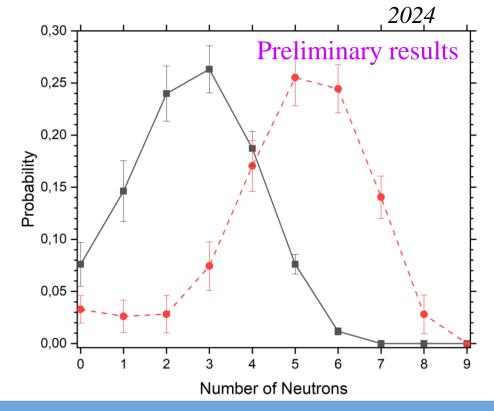
Measured decay modes of ²⁶⁰Sg


$$B_{\alpha} = 28 \%$$

$$B_{SF} = 72 \%$$

Experimental cross-section for 1n evaporation channels in complete fusion reaction ⁵⁴Cr+²⁰⁷Pb. Dots – the experiment data from our experiment and work by B. Sulignano [a].

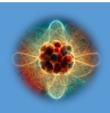

[a] B. Sulignano "Search for K isomers in 252,254No and ²⁶⁰Sg and investigation of their nuclear Structure". Thesis submitted for attaining the degree". 2007.



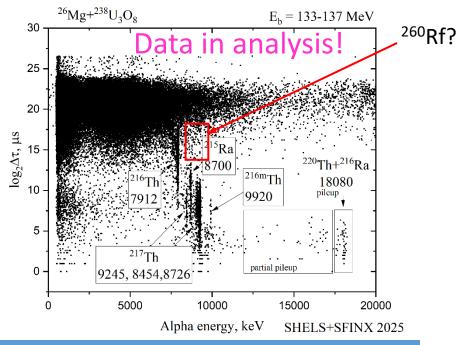
https://www-nds.iaea.org/ https://www-nds.iaea.org/

The neutron multiplicity of SF for 260Sg

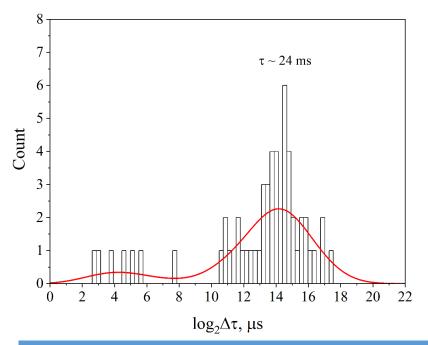
Reaction	⁵⁴ Cr + ²⁰⁷ Pb
Target PbS	350 $\mu g/cm^2$ 2 μm Ti; 207 Pb > 99%
E _{1/2} , MeV	263±3
σ _{max} , nb	~0.3
ε _n , %	55±1
⊿t, ms	0 – 40
Σ_{SF}	171
\sum_{n}	447
$\overline{ u}$	4.8±0.4
$\sigma_{m{ u}}^2$	2.6
P _n	received for the first time
T _{1/2} , ms	~4
b _{SF}	< 0.3



The Tikhonov
method of statistical
regularization was
successfully adapted
for the SFiNx
detection system
experimental data
analysis¹


PFN multiplicity distribution observed in experiments for the SF of ²⁶⁰Sg. Black curved line – experimental data, red – restored by the Tikhonov method of statistical regularization¹.

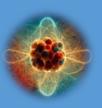
¹ R.S. Mukhin, V.N. Dushin, A.V. Eremin, et. al, Physics of Particles and Nuclei Letters, Vol. 18, No. 4, pp. 439–444 (2021)


²⁶⁰Rf

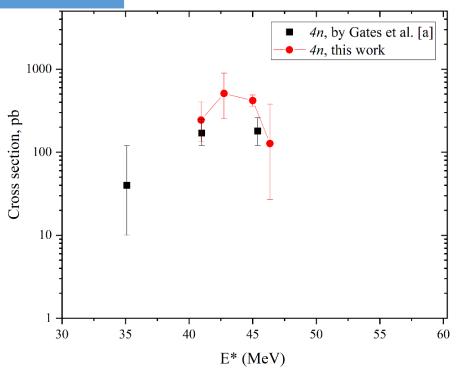
• Reaction 26 Mg+ 238 U \rightarrow 264 Rf+4n

 α -energy-lifetime correlation spectrum for ^{260}Rf analysis.

Lifetime distribution of ²⁶⁰Rf nuclei which was received of SF and products of MNT reactions.


- ☐ We found 60 ER-SF correlations of ²⁶⁰Rf.
- □ The lifetime of 260 Rf was measured to be τ ≈ 24 ms.

260**Rf**22.2 ms


J.M. Gates et al. Phys. Rev. C. 2008 V. 77. P. 034603. DOI: 10.1103/PhysRevC. 77.034603

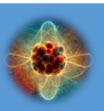
Literature data

Fusion-evaporation cross sections for the reaction ²⁶Mg+²³⁸U

• Reaction ²⁶Mg+²³⁸U→²⁶⁰Rf+4n

[a] J.M. Gates et al. Phys. Rev. C. 2008 V. 77. P. 034603.

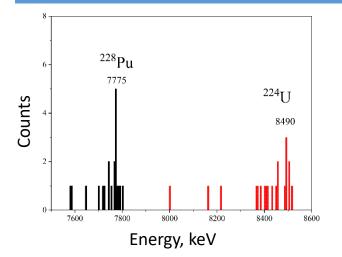
260**Rf**22.2 ms

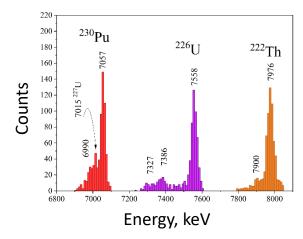

J.M. Gates et al. Phys. Rev. C. 2008 V. 77. P. 034603. DOI: 10.1103/PhysRevC. 77.034603

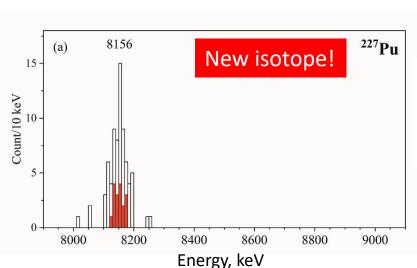
Literature data

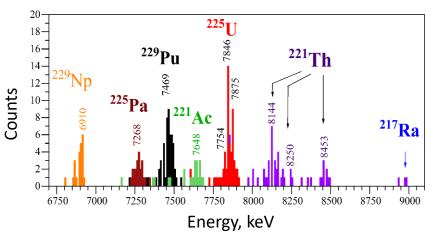
https://www-nds.iaea.org/

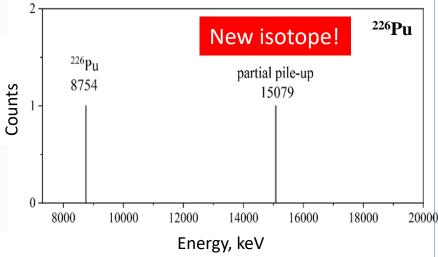
Experimental cross-section for 4n, evaporation channel in complete fusion reaction ²⁶Mg+²³⁸U. Red dots – the experiment data from SHELS exp. in Dubna, black dots – the BGS experiment (Berkeley, 2008) [a].

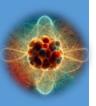

Isotopes of Pu with A = 226-230

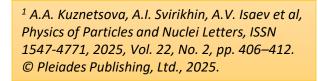


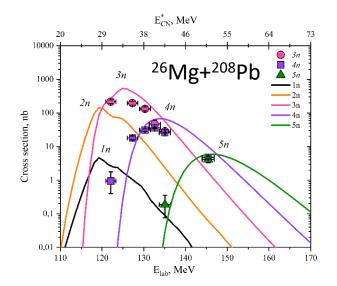

Reaction	Nuclei
²⁶ Mg+ ²⁰⁸ Pb	^{229,230} Pu
²⁶ Mg+ ²⁰⁶ Pb	²²⁷⁻²²⁹ Pu
²⁶ Mg+ ²⁰⁴ Pb	^{226,227} Pu

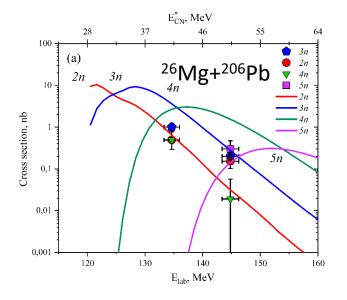

Parameters of experiment

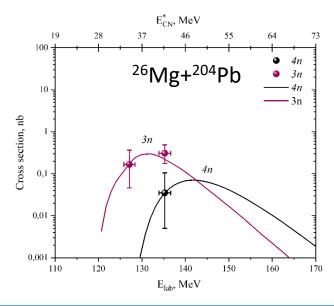

- ☐ The beam energy: 137-150 MeV
- ☐ The average charge of ²⁶Mg: **6+**
- \Box The beam intensity (DC280): 1-2 pµA
- ☐ Transmission GRAND: 6%



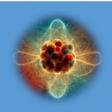





Evaporation residues formation cross-section



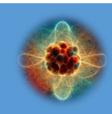
Reaction	Nuclei
²⁶ Mg+ ²⁰⁸ Pb	^{229,230} Pu
²⁶ Mg+ ²⁰⁶ Pb	²²⁷⁻²²⁹ Pu
²⁶ Mg+ ²⁰⁴ Pb	^{226,227} Pu ¹



Evaporation residues formation cross-section for reactions ²⁶Mg+^{204,206,208}Pb; dots – the experimental data, lines – theoretical estimates**.

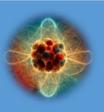
^{**} Karpov A. V. et all, Phys. Part. Nucl. Lett., 2018. V. 15. P. 247.

Conclusions

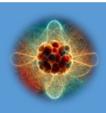


- ☐ Nuclei from different regions of the nuclear map were investigated.
- ☐ The GRAND transmission was found to be higher than that achieved with SHELS.

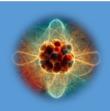
	⁴⁸ Ca+ ²⁰⁶ Pb→ ²⁵⁴ No*	26 Mg+ 204,206,208 Pb \rightarrow 230,232,234 Pu*
SHELS	45 %	3 %
GRAND	65 %	6 %

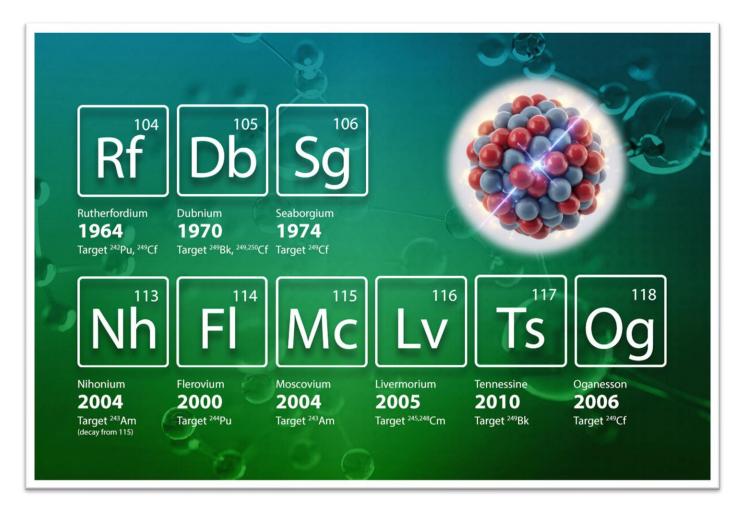

- \Box For the first time for GF-separators, an intensity of 6 pµA was achieved.
- ☐ The high-intensity ion beams makes it possible to achieve high statistics of recoil nuclei, which is crucial for the synthesis and study of super-heavy elements.

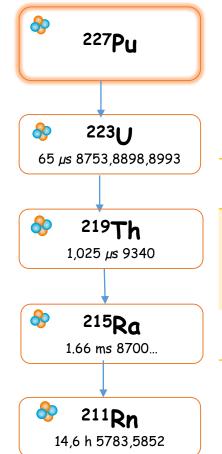
Conclusions


²⁵² No ⁴⁸ Ca+ ²⁰⁶ Pb	 A significant dataset for ²⁵²No was collected for gamma-ray analysis. A publication based on these results is planned for 2026. The evaporation residue cross section of the reaction ⁴⁸Ca+²⁰⁶Pb was measured.
²⁶⁰ Rf ⁵⁴ Cr+ ²⁰⁷ Pb	 Sixty spontaneous fission events of ²⁶⁰Rf were observed, and its lifetime was measured to be approximately 24 ms. The analysis of alpha decay data is ongoing. The excitation function of evaporation residues in the 4n channel was determined. Our results provide a complement to those obtained earlier. A publication is planned for 2026.
²⁶⁰ Sg ²⁶ Mg+ ²³⁸ U	 Over two experiments, 50 alpha decays and 358 spontaneous fission events of ²⁶⁰Sg were recorded. The decay modes of ²⁶⁰Sg were clarified. The neutron yield in the spontaneous fission of ⁶⁰Sg was measured. The evaporation residue cross section for the reaction ⁵⁴Cr+²⁰⁷Pb was measured; for the 4n channel, it was found to be 0.24±0.005 nb. A publication based on these results is planned for 2026.
²²⁶⁻²³⁰ Pu ²⁶ Mg+ ^{204,206,208} Pb	 Two new isotopes, ²²⁶Pu and ²²⁷Pu, were discovered. The decay modes for ²²⁷⁻²³⁰Pu were measured. Excitation functions of evaporation residues in the reactions ²⁶Mg+^{204,206,208}Pb were determined. Statistics for Pu, U, Th, and other nuclei were collected for gamma-ray analysis. The publication is being prepared.
	uladia IIND Warlahar 2025:

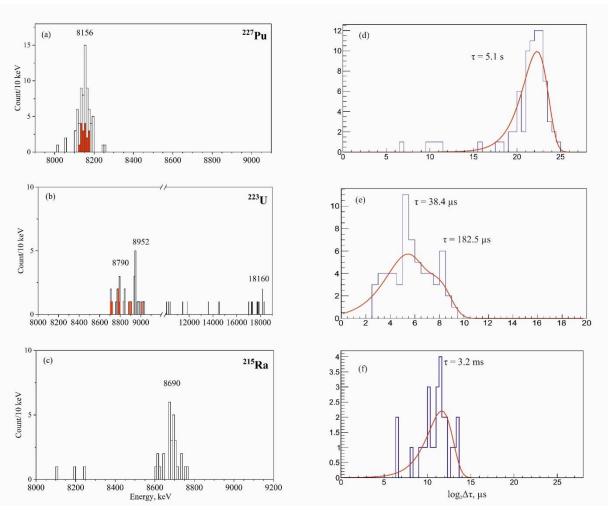
Publications for 3 years

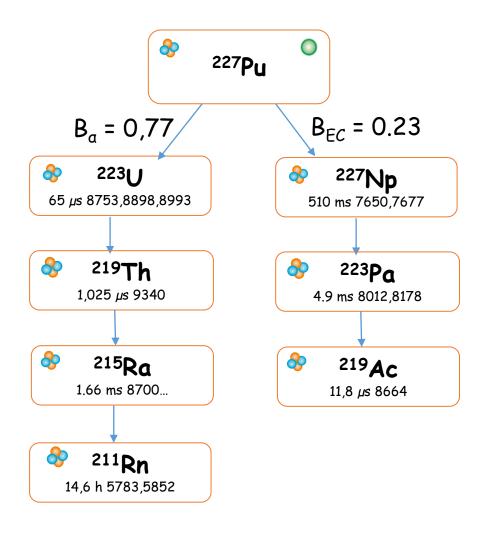

- 1. M. Forge, et al. First experimental measurement of spin splitting and evidence for a second 0⁺ state in ²⁵⁴No, **submitted to Phys. Rev. Lett.**
- 2. P. Brionnet, et al. Structure studies of ²⁵⁷Db through combined alpha, gamma and internal-conversion-electron spectroscopy, **submitted to Physical Review C.**
- 3. A.V. Isaev, et al. The SFiNx detector system (current status), **PEPAN Letters** 22 №2 300-303 (2025).
- 4. H.M. Devaraja, et al. Systematic studies to produce heavy above-target nuclides in multinucleon transfer reactions, Physical Letters B 862 139353 (2025).
- 5. A.A. Kuznetsova, et al. Properties of Radioactive Decay of the New Nucleus ²²⁷Pu, **PEPAN Letters**, 22, № 2(259). C.244–253 (2025).
- 6. R.S. Mukhin, et al. Prompt neutron emission in ²⁵⁰No spontaneous fission associated with ground and isomeric states decay, **Chinese Physics C** 48 №6 064002 (2024).
- 7. A.V. Yeremin, et al. GRAND Universal Gas-Filled Separator: First Experimental Results, PEPAN Letters 21 3(254) 647–659 (2024).
- 8. A. Rahmatinejad, et al. Evolution of fission properties in Fermium region, International Journal of Modern Physics E 2441018 (2024).
- 9. K. Kessaci, et al. Cascade of high-K isomers in ²⁵⁵No, **Physical Review C** 110 054310 (2024).
- 10. R. S. Mukhin, et al. Prompt neutron multiplicity from spontaneous fission of ²⁴⁴Fm, **Eur. Phys. J. A** 60 223 (2024).
- 11. R. S. Mukhin, et al. Analysis of the shape of multiplicity distributions of prompt neutrons emitted in spontaneous fission, J Radioanal Nucl Chem 333, 1559–1564 (2024).
- 12. M. Forge, et al. New results on the decay spectroscopy of ²⁵⁴No with GABRIELA@SHELS, **Journal of Physics Conference Series** 2586 012083 (2023).
- 13. A.V. Isaev, et al. Structure of the prompt neutron multiplicity distribution in the spontaneous fission of ²⁵⁶Rf, **Physics Letters B** 843 138008 (2023).
- 14. R. Chakma, et al. Investigation of isomeric states in ²⁵⁵Rf, **Physical Review C** 107, 014326 (2023).


Future plans

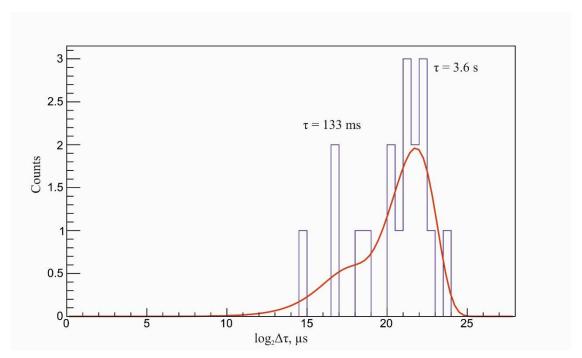

- SHELS, GRAND it is planned to continue studying the formation crosssection and decay properties of light transuranium nuclei (226-228Pu, 236-238Cf, 231-233Am).
- \circ SHELS, GRAND for transfermium region will be studied the decay schemes and nuclear structure of the nuclei in the influence range of the closed shell N = 152 ($^{256-260}$ Rf, $^{256-258}$ Db, $^{257-260}$ Sg).
- **GRAND** to study the nuclei lying in the vicinity of the deformed shell N = 162, and further. The capabilities of the SHE Factory and GRAND make it possible to study the SHE-nuclei decay properties ($^{286-288}$ Fl, 288 Mc). $\sigma \rightarrow 5-10$ pb !!!

Thank you for your attention!


New isotope ²²⁷Pu


- ✓ 60 chains in reaction 26 Mg+ 206 Pb
- √ 32 chains in reaction ²⁶Mg+²⁰⁴Pb

Experiment	Theory
$E_a = (8156 \pm 26)$ keV $Q_a = 8302$ keV	E _α = 8153 keV Q _α = 8300±200 keV
$T_{1/2} = 3.5^{+0.5}_{-0.4} s$	$T_{1/2} = 0.9 s$


** "Properties of Radioactive Decay of the New Nucleus ²²⁷Pu" http://www1.jinr.ru/Preprint s/2024/50(P7-2024-50).pdf

EC for 227Pu

- \square 12 ER(227 Pu)- 227 Np- 223 Pa chains were found.
- \Box EC half-life is $T_{1/2}$ (ER+227Np) = $2.5_{-0.5}^{+0.8}$ s
- \square ²²⁷Np has E_a = (7626±24) keV and (7687±21) keV
- \Box EC branch for ²²⁷Pu is $B_{EC} = 0.23 \pm 0.10$.

The time distribution of $\Delta \tau(^{227}\text{Pu}+^{227}\text{Np})$ and $\Delta \tau(^{227}\text{Np})$ obtained in and the reactions $^{26}\text{Mg}+^{204}\text{Pb}$ and $^{26}\text{Mg}+^{206}\text{Pb}$

30