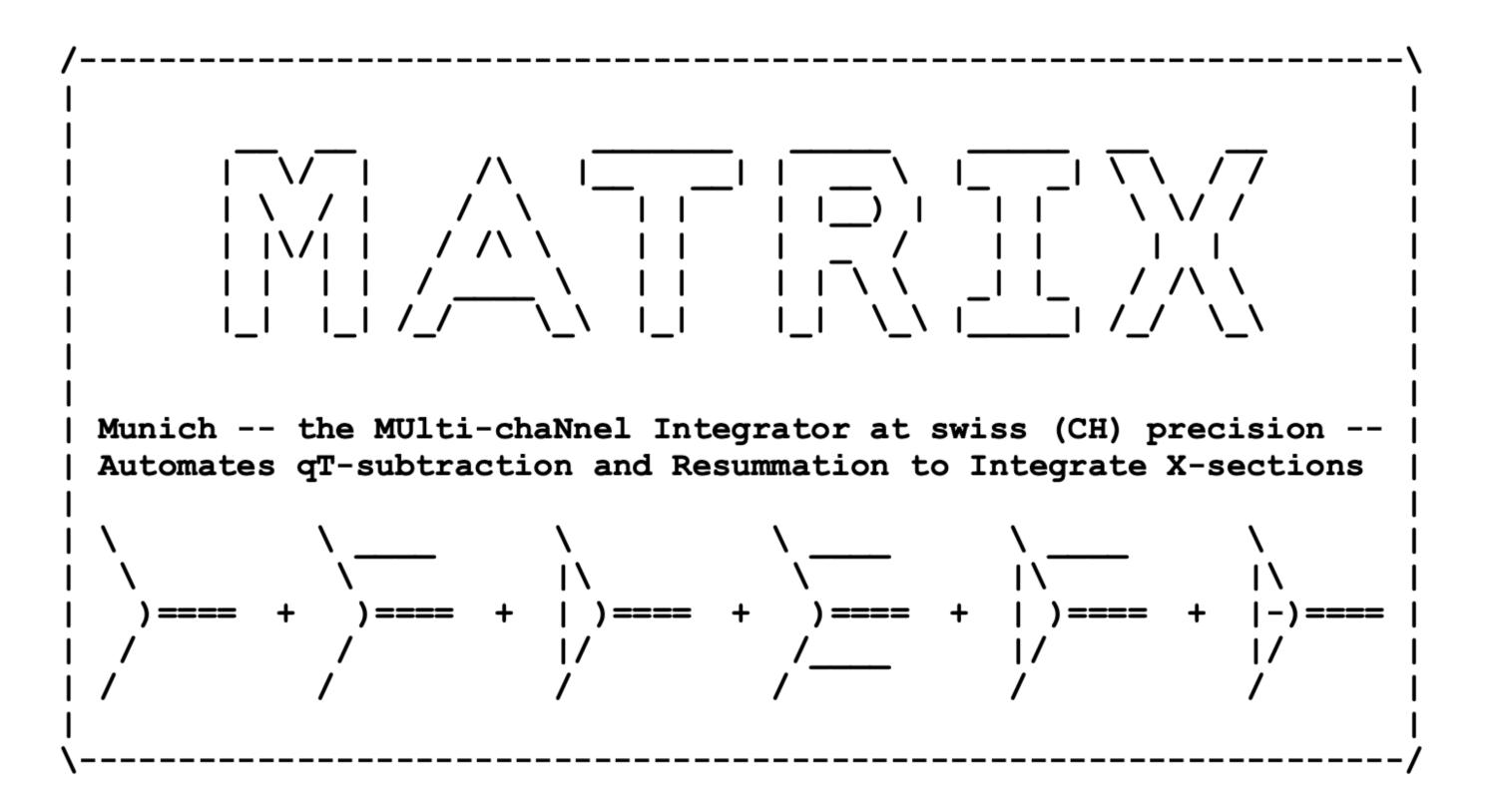
Lecture*. MATRIX hands-on

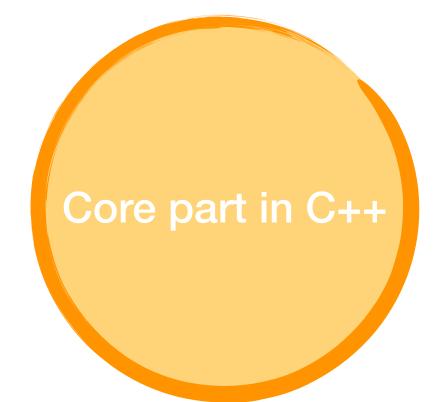

Luca Buonocore

Advanced School & Workshop on Multiloop Scattering Amplitudes NISER - 15-19 January 2024

Useful links:

https://matrix.hepforge.org/

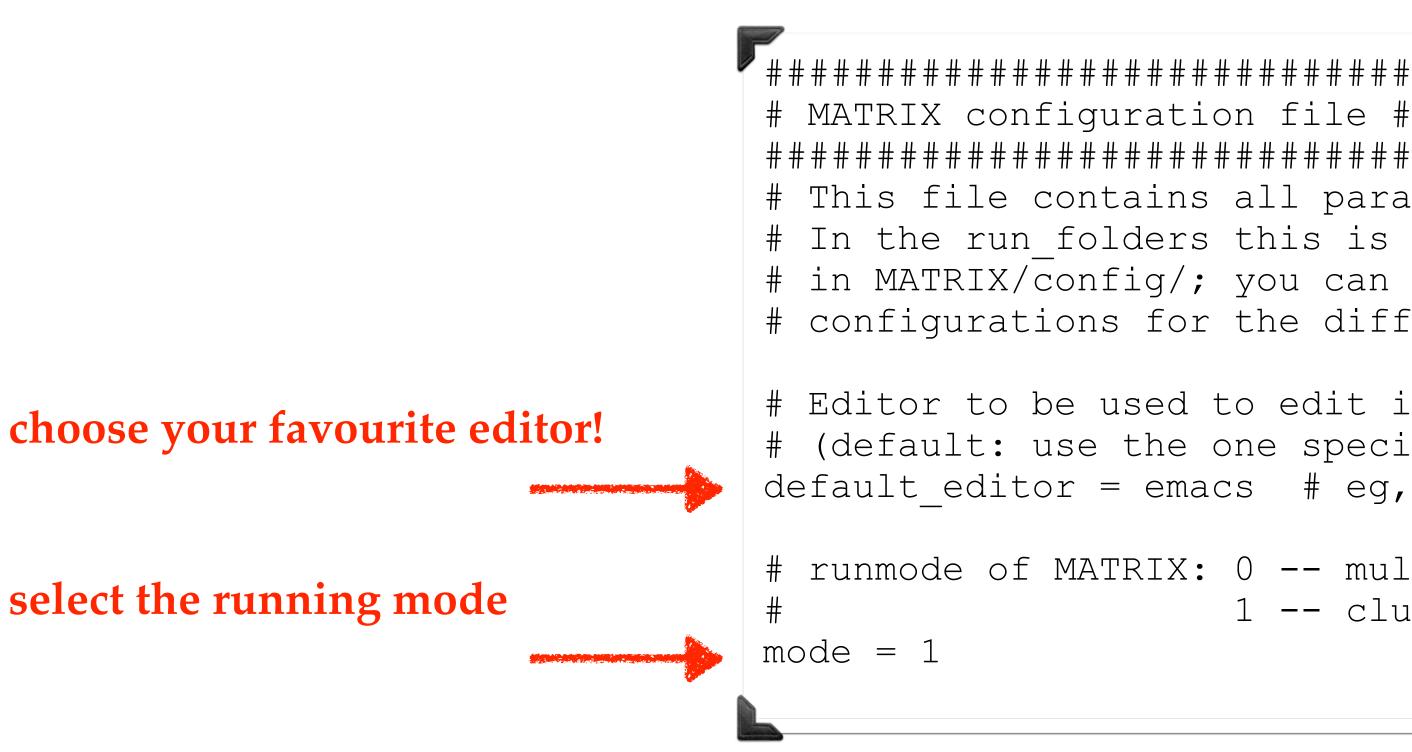
https://matrix.hepforge.org/manual.html


Getting started

Prerequisites: working installation of LHAPDF (<u>https://lhapdf.hepforge.org/downloads/</u>) such that the program **lhapdf-config** is available to your system

Download the latest stable release MATRIX_vX.Y.Z.tar.gz at <u>https://matrix.hepforge.org/download.html</u> After extracting the archive MATRIX_vX.Y.Z.tar.gz (for example, tar -xzf MATRIX_vX.Y.Z.tar.gz), the program matrix is available in the MATRIX folder MATRIX_vX.Y.Z (from now on \$MATRIX_HOME)

./matrix


user-friendly shell with tab completion (python3 compatible)

Getting started

Edit the configuration file \$MATRIX_HOME/config/MATRIX_configuration For most of the users, default choices are fine, but


```
# This file contains all parameters to configure MATRIX
# In the run folders this is the link to the central configuration file
# in MATRIX/config/; you can replace the link by a copy to have individual
# configurations for the different processes
# Editor to be used to edit input files from MATRIX shell
# (default: use the one specified under environmental variable EDITOR)
default editor = emacs # eg, emacs, vi, nano, ...
# runmode of MATRIX: 0 -- multicore (default)
                    1 -- cluster
```


Getting started

Edit the configuration file \$MATRIX_HOME/config/MATRIX_configuration

For most of the users, default choices are fine, but

```
###============####
                                                   important parameters to specify
 ## cluster parameter ##
 # Name of cluster currently supported:
    slurm, LSF (eg, lxplus), HTcondor, condor lxplus (special version working on lxplus HTCondor),
    condor, PBS, Torque, SGE (PSB and Torque/OpenPBS are identical at the moment)
 cluster name = slurm
 # Queue/Partition of cluster to be used for running
 cluster queue = grazzini
 # Use local scratch directory to run on cluster (speedup for slow shared file systems):
    condor, PBS, Torque, SGE (PSB and Torque/OpenPBS are identical at the moment)
 cluster name = slurm
 # Queue/Partition of cluster to be used for running
 cluster queue = grazzini
 # Use local scratch directory to run on cluster (speedup for slow shared file systems):
 # 0 -- standard run on shared file system (default)
 # 1 -- run in local scratch of nodes; PROVIDE cluster local scratch path BELOW!
 # NOT IMPLEMENTED YET: 2 -- run without shared file system; PROVIDE cluster local scratch path BELOW!
cluster local run = 0
```

in Cluster Mode, other

just an example!

Getting started

compilation parameter ## ###=========================#### # maximum number of cores used for compilation (default: maximal cores available on the machine); #nr cores = 16 # when commented the default is used # you can specify the path to lhapdf-config executable; not required if lhapdf-config executable # accessible from command line (will be determined automatically in that case) #path to lhapdf = /PATH/lhapdf-config # !absolute path! # if OpenLoops is already installed, you can specify the path to openloops executable; not required # if openloops executable accessible from command line (will be determined automatically in that case); # otherwise, OpenLoops will be downloaded and installed automatically #path to openloops = /PATH/openloops # !absolute path! #you can specify the path to recola, if already installed locally. #path to recola = /PATH/recola sm # !absolute path! #you can specify the path to chaplin, if already installed locally. #path to chaplin = /PATH/chaplin # !absolute path! # you can specify the path to ginac, if already installed locally; ginac will not be compiled in this case #path to ginac = /PATH/ginac-install/ # !absolute path! # you can specify the path to cln, if already installed locally; cln will not be compiled in this case #path to cln = /PATH/cln-install/ # !absolute path! # you can specify the path to 2100p amplitude of ppaaa03 process, if already installed locally; #path to ppaaa03 2loop = /PATH/ppaaa03 2loop-install/ # !absolute path! # you can specify the path to the libfortran libary, usually found by the system automatically # NOTE: this path must also be set if the libquadmath library is not found # NOTE: this path can be also used if other libaries are missing during the compilation process #path to libgfortran = /PATH/x86 64-linux-gnu/ # !absolute path! # you can specify the path to gsl-config executable; not required if gsl-config executable # accessible from command line (will be determined automatically in that case) #path to gsl = /PATH/gsl-config # !absolute path!

if you have your own installation of some of the required tools, or standard library installed in non-standard place ...

Set up a process (first time)

\$./matrix

List of available process

\$>> list

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

1

Set up a process (first time)

process_id		process		description
pph21	>>	рр> Н	>>	on-shell Higgs production (NNLO)
ppz01	>>	p p> Z	>>	on-shell Z production (NNLO,NLO EW)
ppw01	>>	$p p> W^-$	>>	on-shell W- production with CKM (NNLO)
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM (NNLO)
ppeex02	>>	p p> e^- e^+	>>	Z production with decay (NNLO,NLO EW)
ppnenex02	>>	p p> v e^- v e^+	>>	Z production with decay (NNLO,NLO EW)
ppenex02	>>	p p> e^- v e^+	>>	W- production with decay and CKM (NNLO,NLO EW)
ppexne02	>>	p p> e^+ v e^-	>>	W+ production with decay and CKM (NNLO,NLO EW)
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production (NNLO)
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay (NNLO)
ppnenexa03	>>	p p> v_e^- v_e^+ gamma	>>	Z gamma production with decay (NNLO)
ppenexa03	>>	p p> e^- v_e^+ gamma	>>	W- gamma production with decay (NNLO)
ppexnea03	>>	p p> e^+ v_e^- gamma	>>	W+ gamma production with decay (NNLO)
ppzz02	>>	рр> Z Z	>>	on-shell ZZ production (NNLO)
ppwxw02	>>	p p −-> W^+ W^-	>>	on-shell WW production (NNLO)
ppemexmx04	>>	p p> e^- mu^- e^+ mu^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^- v_e^+	>>	WW production with decay (NNLO,NLO gg,NLO EW)
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay (NNLO,NLO gg,NLO EW)
ppemexnmx04	>>	p p> e^- mu^- e^+ v_mu^+	>>	W-Z production with decay (NNLO,NLO EW)
ppeeexnex04	>>	p p> e^- e^- e^+ v e^+	>>	W-Z production with decay (NNLO,NLO EW)
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v mu^-	>>	W+Z production with decay (NNLO,NLO EW)
ppeexexne04	>>	p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay (NNLO,NLO EW)
ppttx20	>>	p p> top anti-top	>>	on-shell top-pair production (NNLO)
ppaaa03	>>	p p> gamma gamma gamma	>>	gamma gamma production (NNLO)

new in MATRIX 2.1.0

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

1

Set up a process (first time)

	^	-			T
our	favourite	examp	le: N	CDY]
•••					

process_id		process		description
pph21	>>	рр> Н	>>	on-shell Higgs production (NNLO)
ppz01	>>	рр> Z	>>	on-shell Z production (NNLO,NLO EW)
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM (NNLO)
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM (NNLO)
ppeex02	>>	p p> e^- e^+	>>	Z production with decay (NNLO,NLO EW)
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay (NNLO,NLO EW)
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM (NNLO,NLO EW)
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with decay and CKM (NNLO,NLO EW)
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production (NNLO)
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay (NNLO)
ppnenexa03	>>	p p> v_e^- v_e^+ gamma	>>	Z gamma production with decay (NNLO)
ppenexa03	>>	p p> e^- v_e^+ gamma	>>	W- gamma production with decay (NNLO)
ppexnea03	>>	p p> e^+ v_e^- gamma	>>	W+ gamma production with decay (NNLO)
ppzz02	>>	рр> Z Z	>>	on-shell ZZ production (NNLO)
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production (NNLO)
ppemexmx04	>>	p p> e^- mu^- e^+ mu^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with decay (NNLO,NLO gg,NLO EW)
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^- v_e^+	>>	WW production with decay (NNLO,NLO gg,NLO EW)
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay (NNLO,NLO gg,NLO EW)
ppemexnmx04	>>	p p> e^- mu^- e^+ v_mu^+	>>	W-Z production with decay (NNLO,NLO EW)
ppeeexnex04	>>	p p> e^- e^- e^+ v_e^+	>>	W-Z production with decay (NNLO,NLO EW)
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_mu^-	>>	W+Z production with decay (NNLO,NLO EW)
ppeexexne04	>>	p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay (NNLO,NLO EW)
ppttx20	>>	p p> top anti-top	>>	on-shell top-pair production (NNLO)
ppaaa03	>>	p p> gamma gamma gamma	>>	gamma gamma production (NNLO)

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

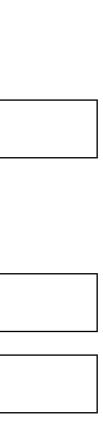
1

Set up a process (first time)

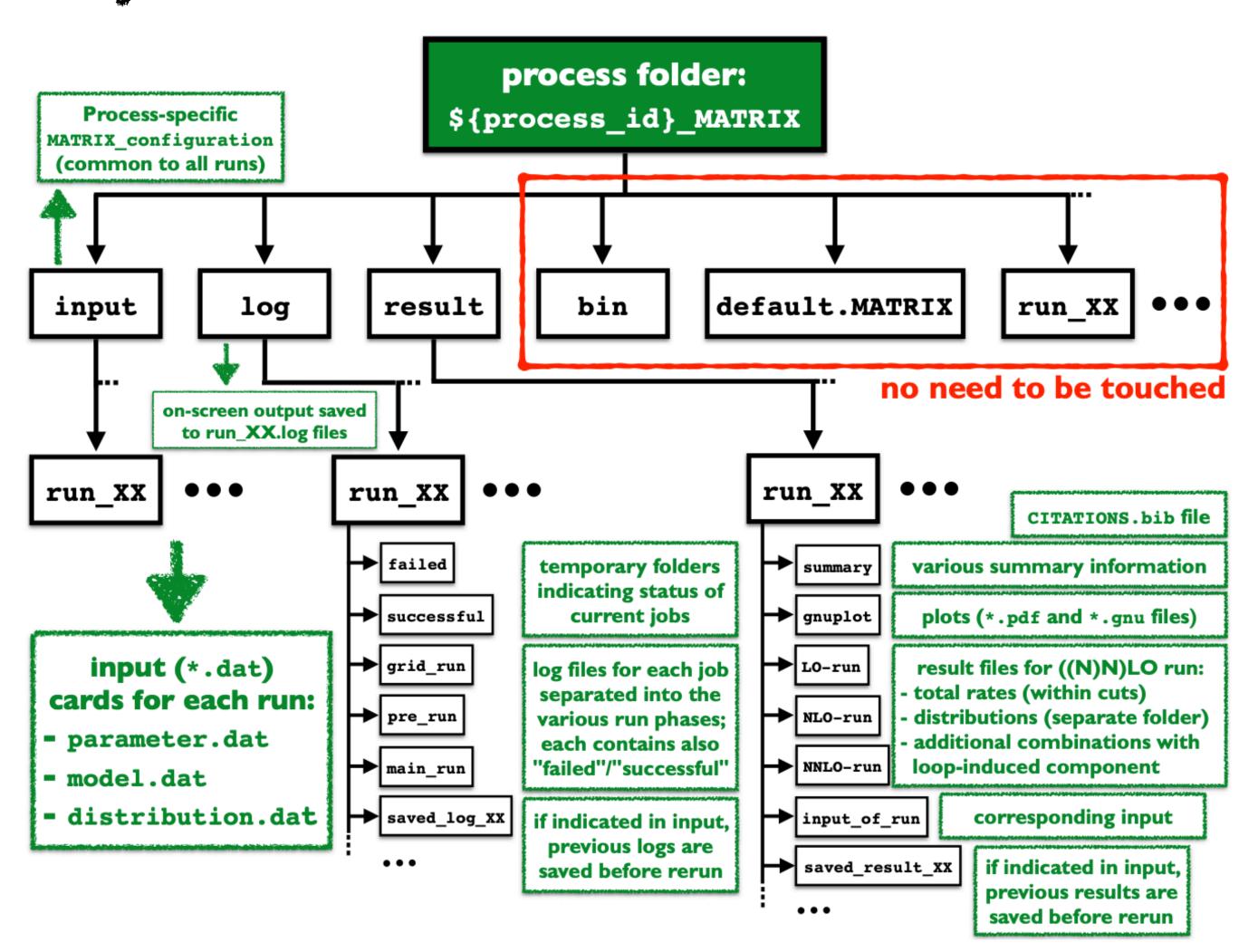
\$>> ppeex02

Agree with the terms to use Matrix

\$>>y


\$>>y

This will


- install all necessary dependences (OpenLoops2, CLN, GINAC)
- download and compile relevant tree-level and one-loop amplitudes
- compile the actual MATRIX process
- generate the main run folder

```
<<MATRIX-INFO>> Process folder successfully created.
 <<MATRIX-INFO>> and start run by typing:
                 ./bin/run process
```

<<MATRIX-INFO>> Process generation finished, to go to the run directory type: cd /disk/data11/ttp/lbuono/codes/MATRIX v2.1.0/run/ppeex02 MATRIX

Structure of run directory

Run the process

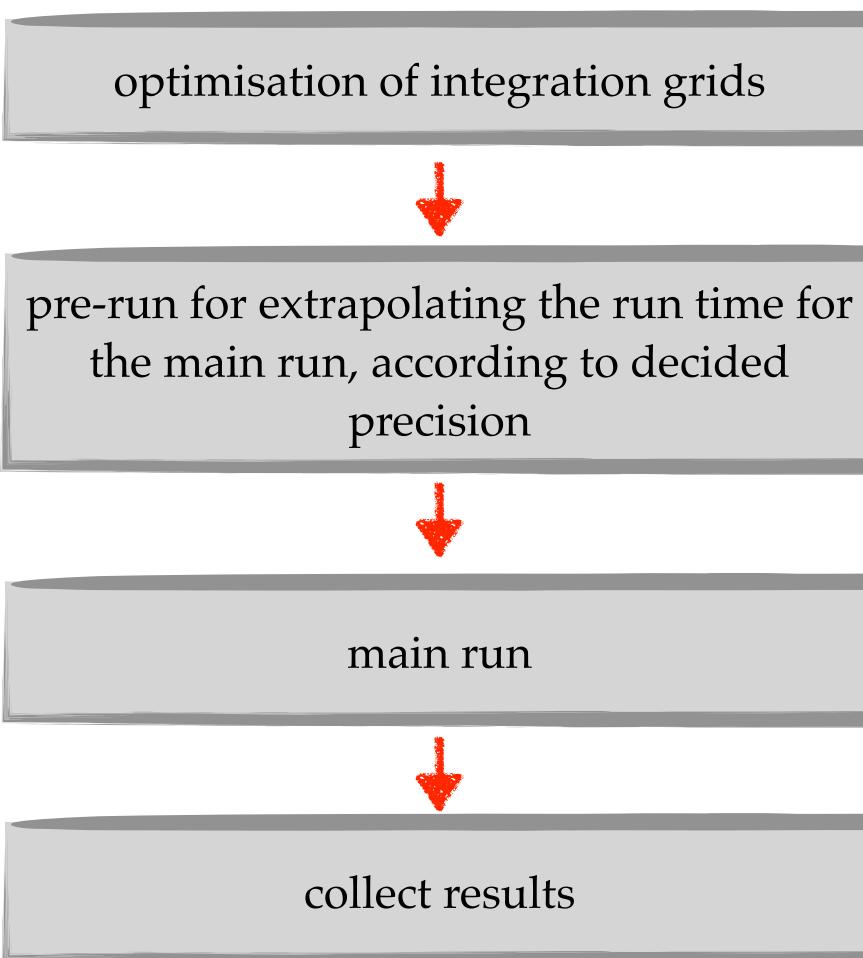
In the run directory

./bin/run process \$

Interactive mode

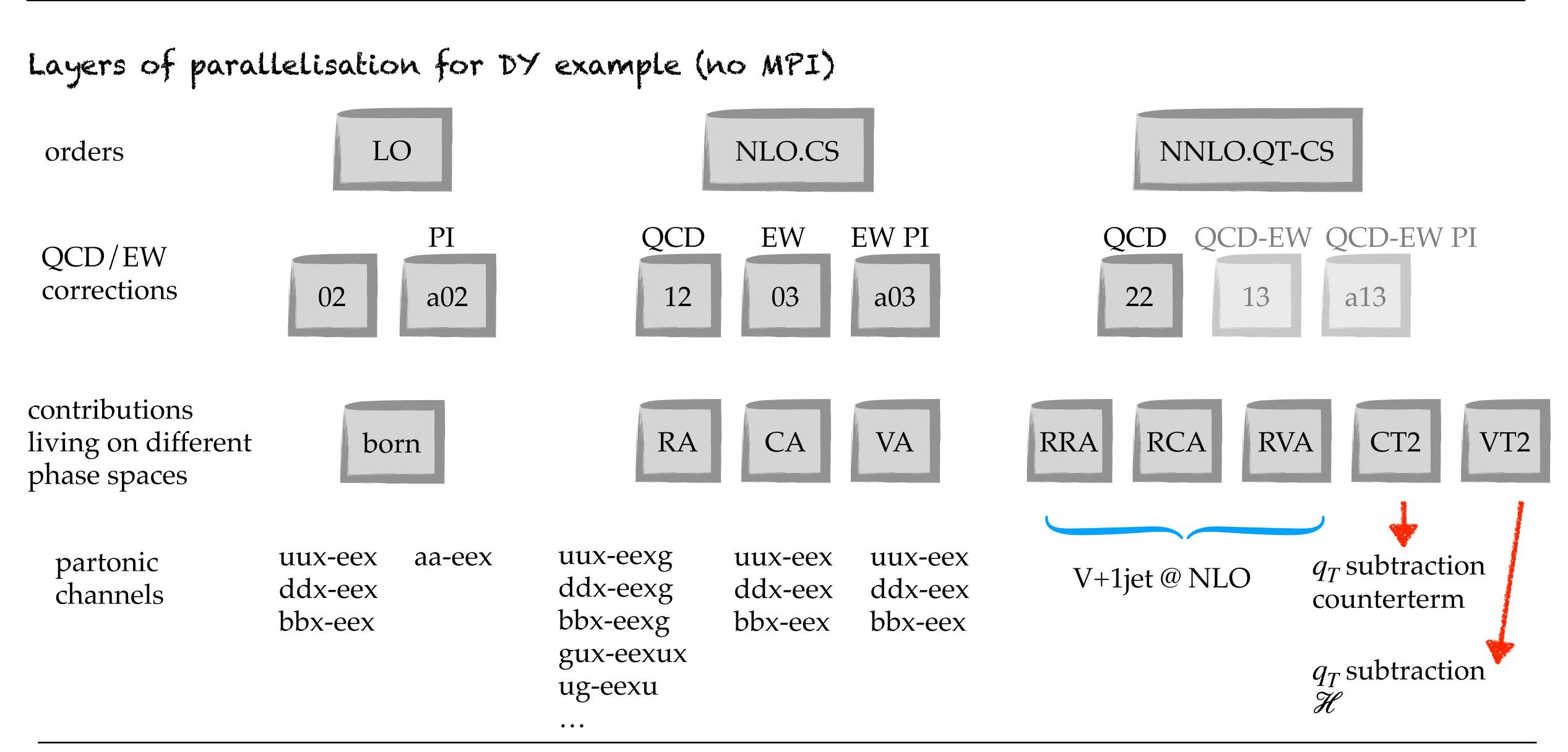
- choose a name of the run (run XXX)
- 2. set up main parameters of the run, parameters of the model, (single and, possibly, double) distributions
- 3. run all stages or run particular stage

Modification of the parameters is performed through the selected default editor


Alternatively

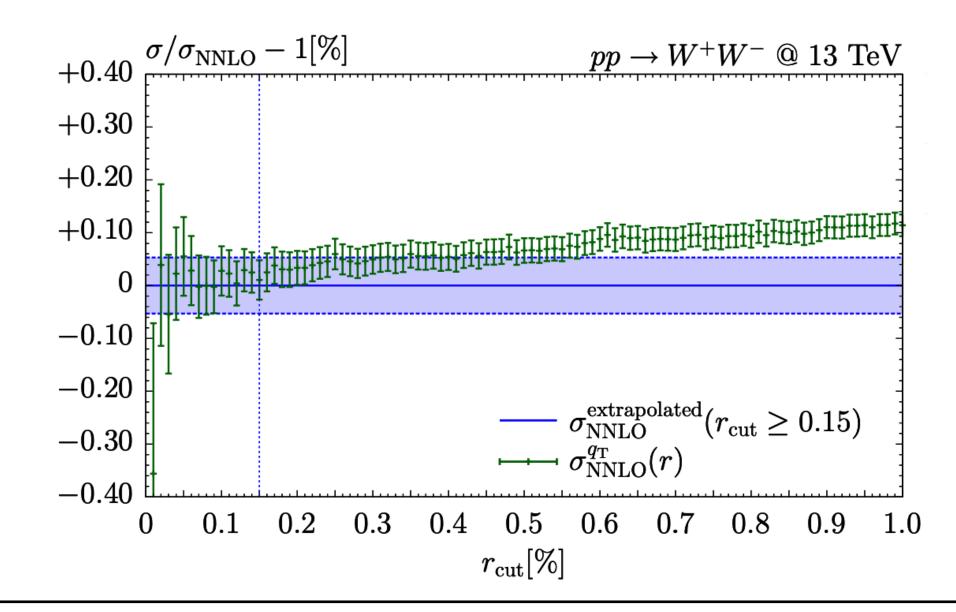
- choose a name of the run (run_XXX)
- 2. set up run folder
- changes parameters "offline" 3.
- rerun ./bin/run_process with the same run name, run all stages or run particular stage

Advice: in cluster mode, use a terminal multiplexer (as screen or tmux)

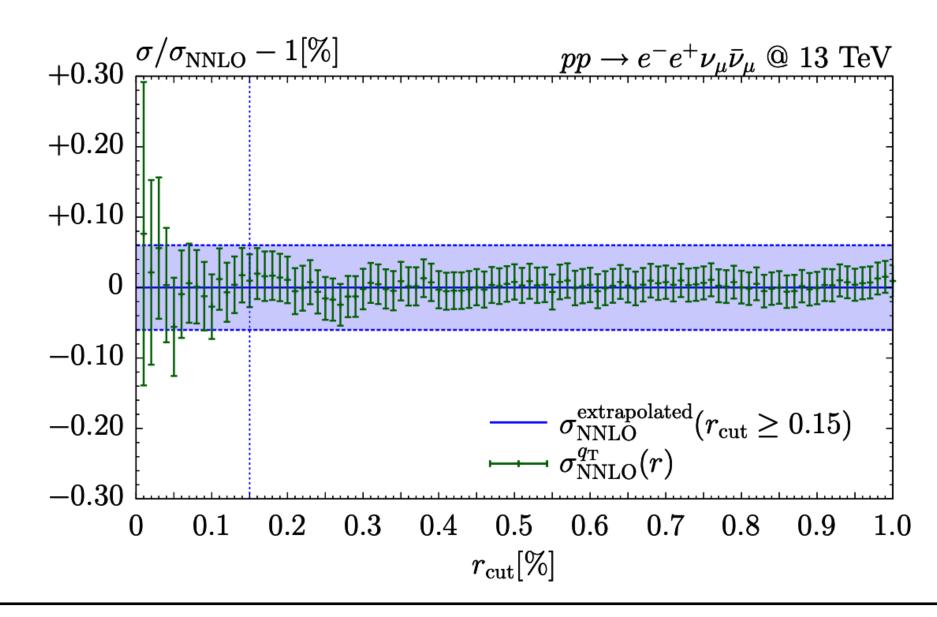

Run stages

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

automatically determines the required number of integration points for each contribution and prepare all the folders to start their parallel runs



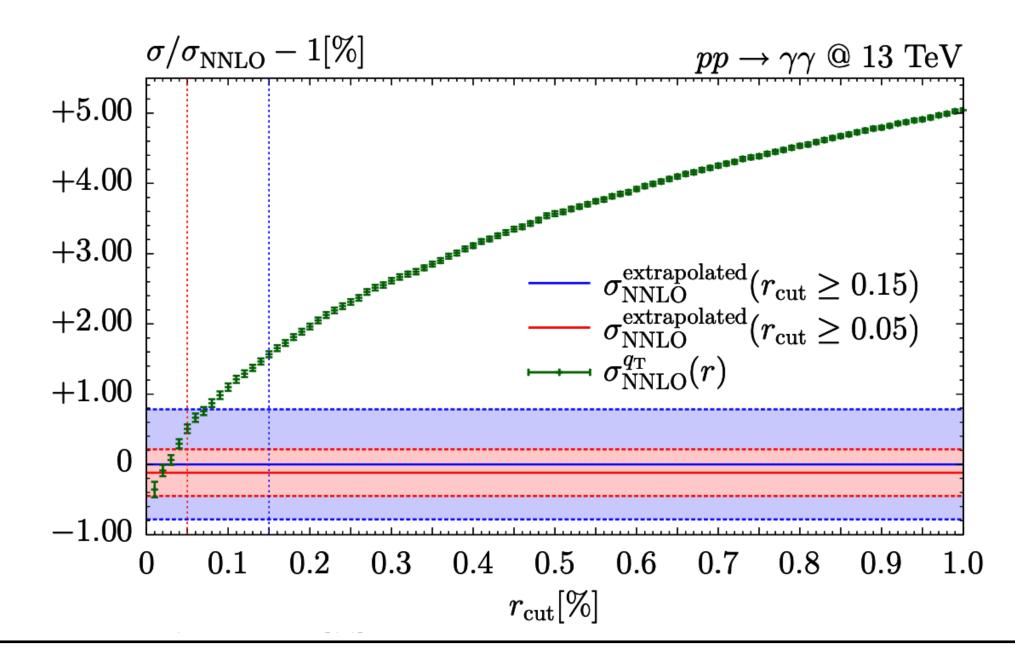
Systematics due to the use of q_T -subtraction (see Sec7. of 1711.06631)


Only the NNLO corrections is computed using the q_T subtraction method

divided by its mass is imposed $q_T/M_F > r_{cut}^{min}$ (<1%)

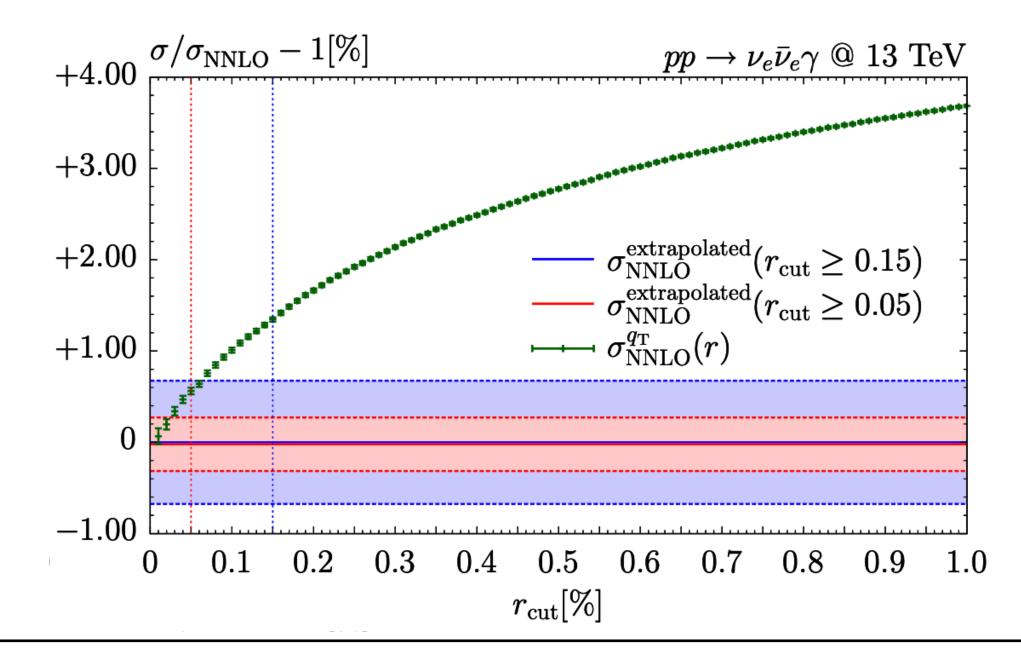
The cumulative distribution in the range $[r_{cut}^{min}, 1\%]$ is accumulated **during the same run** wist steps of 0.01% From these data, an **extrapolation procedure** is used to estimate the limits $r_{\text{cut}} \rightarrow 0$ and a relative uncertainty bin basis

- For a process of the kind $p + p \rightarrow F + X$, a minimun cut on the transverse momentum of the triggered final state F
- The extrapolation procedure is based on a quadratic χ^2 fit and can also be applied to differential distributions on bin-by-


Systematics due to the use of q_T -subtraction (see Sec7. of 1711.06631)

Only the NNLO corrections is computed using the q_T subtraction method

divided by its mass is imposed $q_T/M_F > r_{cut}^{min}$ (<1%)


Large power corrections for specific cases as processes involving photons, due to photon isolation requirements (Frixione isolation)

In these cases, it is better to use a smaller value for r_{cut} (in input card parameter, this is set by switch qT accuracy)

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

For a process of the kind $p + p \rightarrow F + X$, a minimun cut on the transverse momentum of the triggered final state F

