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»  The Standard Model is the best theory, so far, for describing the elementary particles and their

INnteractions;
Standard Model Production Cross Section Measurements Status: February 2022
Q ATLAS Preliminary

Theory

» During the years it has proven itself very <o
successful In explaining and predicting with
extreme precisions a big variety of phenomena
N fundamental interactions, spanning several
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What's next?

The SM has still many open questions, e.qg. gravity, neutrino masses, dark matter, ...

In order to answer those questions we need to find a model which goes Beyond the Standard
Model (BSM). However, no experimental evidence of any BSM model has been found in the last

years;

New physics effects could still enter in virtual corrections, leading to some deviations of

experimental measurements from theoretical predictions.
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Higher order corrections

» |In order to have more precise theoretical predictions we have to include higher order corrections,
either in QCD or in EW;

State of the Art
0.0)" >M~‘M< N3LO QCD
Lo o\

2 > 1 NNLO Mixed
N NLO EW
— N3LO QCD

NLO 0Oy o+ q 6OV M E——- 2 =2 NNLO Mixed
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> NNLO QCD
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2—3 NLO EW
»  One of the main bottlenecks in these calculations comes from the evaluations of virtual corrections
due to the high number of Feynman integrals with different energy scales;
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Workflow of a Multi-loop computation

» @(0{3), O(aga), O(a?), ...

» Which particles are massless”

Process definition |




Workflow of a Multi-loop computation

= e

Process aefinition ]
| * — l » Some publicly available code: FeynArts or QGRAF
i

‘Generation of Feynman
diagrams
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Workflow of a Multi-loop computation

Process definition | » Simplifying expressions;

Generation of Feynman | Handing y> in d dimensions;

Ndiagrafns » Computing traces of y-matrices;

» Reduce tensor loop-integrals to scalar ones;

>l

‘Computation of interference i
terms




Workflow of a Multi-loop computation

Process definition |

‘Generation of Feynman |
diagrams ‘

Computation of interference | | |
ﬂl‘erms - > Publicly available code: KIRA, FIRE or REDUZEZ, ...

Reduce to a set of Master |
Integrals
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Workflow of a Multi-loop computation

Process definition |

‘Generation of Feynman |
diagrams

‘Computation of interference |
terms

‘Readuce to a set of Master '
N/HTGQQ/S »  Different approaches are possible: Feynman parameters,
Monte Carlo integration, Tropical Geometry, ...

Evaluation of Mls |

» One possibility is the Method of differential equations
(with a semi-analytical approach);

»  Complex masses for gauge bosons;



Workflow of a Multi-loop computation

Process definition |

‘Generation of Feynman |
diagrams *

‘Computation of interference |
terms *

Reduce to a set of M '
Integrals ”

Evaluation of Mls |

»  Counter-terms for UV renormalisation;

» Subtraction of IR divergences;
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w/nteg;als ’ » Combine with real contributions and perform a
B Monte-Carlo integration over phase-space;

Evaluation of MIs

»  Phenomenology




Workflow of a Multi-loop computation
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Evaluatlng Feynman mtegrals

» What we would like to compute are objects like this:

[(a;; s

/ B "\

kinematic variables

d=4-"2¢

/ l
X J’ JHlﬂd/z @0‘1 G

e.g. (p1—qp)> —m*+id

» A given set of denominators 91‘ constitutes an integral family. Inside an integral family an integral is

uniquely identified by the set of the different powers a; to which the denominators are raised.

» Using Integration by Parts ||

33
family in terms a smaller subset, the so-called Master Integrals.

) Identities, we can express all the integrals of the given integral



to compute Integrals?

Many techniques have been developed during the years, each with pros and cons. Here | will focus
on the method of differential equations.

The idea Is that by differentiating a master w.r.t. a kinematical invariants we obtain a first order linear
differential equations, whose solution is the master integrals we are interested In.

0 . :
—I(a;; 5, d) = Z scalar integrals = Z master integrals

os
| \ IBP

By repeating the same process for every master integral we obtain a system of first order linear
and homogeneous differential equations.




A very simple oubble

‘], X,
dq 1
<=—_> Ial az(pz’ m2, d) — J . a %3
i _O_ F g2 =m? ™ | = pp? = m?]
R

2

. This problem has 2 kinematic invariants, p* and m?, and 2 master integrals: I;, and I},

.- O  I-—(O—

» By differentiating w.r.1. p2 we obtain

d
dp?

d 1 1 3 1 :D
dp> - 2p2 2p2 2




A very simple exam oubble

‘], X,
dq 1
<=—_> Ial az(pz’ m2, d) — J . a %3
i _O_ F g2 =m? ™ | = pp? = m?]
R

»  This problem has 2 kinematic invariants, p2 and m?

.- O  I-—(O—

» By differentiating w.r.1. p2 we obtain

., and 2 master integrals: [,y and [,

d
dp?

d . d-2 (d—4)p* + 4m” S
dp?  p2(4m?2 - p?) _Q. 2p2(4m?2 — p2)




vWhat are we looking for?

» SO we just have to solve a system of first order differential equations... HOW?
»|deally, we would like:

; ImportMasterIntegrals["my master -integrals"]
® A methOd easy tO aUtOmatlse ABISS: Succesfully imported 380 master integrals

® A solution compact and easy to handle to allow for simplifications

2 2
Lir(x) + Lis G) _ ’; log; *)
N B

Lir(x) + L, (1 —x) = 3 + log(x)log(1 — x)

® A solution fast to evaluate to be implemented in a Monte-Carlo
® [0 have high control on numerical precision

— 2RelPuO" =) c;MI ~ >

l

610710 — 1019
O(10 — 10%)



Analytlcal solutlon

— —— e —
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here are many possibilities to solve the system, each with pros and cons
The first method is to solve it analytically. This is, by far, the preferable method.

—p? +2m?* + \/(p2 — 2m?%)? — 4m*

2m?

. 2 1
Ilo?mte)(pz, m?) =2 — vr — log m? "~ (— — r) log r with r =
: p2 \r

The result is provided in closed form as a combination of elementary and special functions, such as
Generalised PolyLogarithms. Of these functions we know functional relations and series

expansion; g |
Gay, ... a,:2) = G(ay ...a,;7)  and  G(0,52) = —log"z
Jo I —ay n!

However, especially when increasing the number of scales or legs, an analytical expression in terms
of known classes of functions might not be available. Moreover, the numerical evaluation of the result
might require a long time with external libraries.
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Numerical solution

e _

»  The second possibility Is to solve the equations numerically. Now the result is provided as a
numerical grid.

25F
20F

15}

Il(’/linlte)(pz, m2 — 1) : 1'05_ .. .'..... Im

e
R
°

°o® B

»  This can be done with methods such as Runge-Kutta. There are some examples in literature,
nowever this has not received too much attention. The main problem is the difficulty in controlling the
numerical precision of the solution.
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Semi-analytical solution

A third possibility could be to use a semi-analytical approach. In this case the result is provided as
a power series which can be easily evaluated in every point of the domain.

X 1 1 1
IEffnz e)(p2,m2 =)= — }’E‘l‘gpz +E(p2)2 :

| |
243 214 25

+ | + ...
420 P 2520 P 13860 P

The method has been firstly implemented in the Mathematica package DIffExp for a real kinematic
variable [FEMoriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.06510]

The main advantage is that all the calculations can be carried out analytically.

This method Is quite easy to automatise. Provided that we have infinite time and space, we could
achieve arbitrary precision. Moreover, once we have the solution, it can be evaluated numerically in
a negligible amount of time.

However, series have a limited radius of convergence, hence, an algorithm for performing the
analytic continuation of the solution must lbe provided.
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1L-QED vertex

¢,P

pr=py=m, x — ] =Jddq 1

(p1 +py)* =5 ¥, m )it (g2 [(q + po)? = m2]™ (g = py)? = m2]™
e P

» This problem has 2 masters, which can be chosen as the massive tadpole and the scalar triangle;

d
ds

5 2
d e —1 2m; — s — s€
ds s m2 (s — 4m?2) s (s — 4m2)

»  The singularities of the problem can be read from the coefficient matrix.
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1L-QED

»  For simplicity we
parameters the p

introduce an adimensional variable x = s/ me2 Tr

vertex

— —_— = = — _ - — _ _
= — — _ —— — e —

‘oblem depends on, thus speeding up the computation.

IS reduces the number of

» The first step Is to separate each order In €. To do so we can read from the boundary conditions

+ o0

the minimum order in €, and write B; = Z Bl.(j) e/. Then we can collect order by order in €:

j:€min
iBﬁ):o
dx
O(l/e) : ] , h
& g-b — B B
dx x(=4 1 x@—4) 2
iBl<0>=o
dx
O(e?)
dpo__ 1 pen L po__ b pen_ X722 p0
dx 2 x(x—=4"1  x@-4 ' x-42  x@x-4 2
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1L-QED vertex

,  Let us start from O(1/€) and expand around x = 0. The first equation is trivial and gives: Bl(_l)(x) =]

e — s S s e T T e T e —— = = — ———————————————— —— —— = = =5 S

— B¢ )(x) — B¢ )(x)
dx 2 x(x—4) ? x (x —4)
1
(=1 —

» First of all we start from the homogeneous equation. For that we use the Frobenius method, i.e. we
o0

use the ansatz Bz(_l)’h"m(x) =x" Z cl-xi, with r € Q.
i=0

x" [cl + 2xcy + 3x%cy + @(x3)] + rx~ T [CO + xc; + x%cy + @(x3)] = x—2

/ > i
| | P

d 1 1 X x2
EBz(_l) e | 7 | = | @(x3) x" [CO+xc1+x262+@(x3)]
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1L-QED vertex

» Let us expand everything

>

Co
= —— X

2

1
FCO=——CO

2

C1

1
1 +7r)c =
( ) ¢ .

2

1
(2"‘7’) Cz=3—2(1+461— 1662)

1
B+7)cy = o (1+4c, + 16¢, — 64¢;)

1

32

reg x T+ A+ X+ QR+ e xTT+HB+1) oy X+ O =

—1+r + €0 Cl x7 4
3 2

And collect the different powers of Xx:

(co+4c; — 16¢,) x'*7

16

1
| = (CO + 4¢; + 16¢, — 6463) x* 4+ O(x)

1
r=——
P
1
cCi, = —C
1 80
3
CHh = —C
27 128 Y
3




Varlatlon of parameters

e —_— = ~ e e ——

> Now that we have a solutlon to the homogeneous eo|uat|on we can olotaln a |oart|oular one W|th the
method of variation of parameters, i.e. we look for a particular solution of the form:

Bz(_l)’p“r '(x) = C(x) Bz(_l)’hom(x). If we substitute in the original equation we get

1

/ (—1),hom hom’ — (—1),hom
) BI) + €y B (0 = = == G B0 =
C/(X) B(—l),hom(x) —_ 1 — C’(X) — 1 <B( 1), hom(x)> -
2 x(x—4) x(x—4)
C(x) p— JX (B( 1) hOm(X )) ldx/ ﬂ
0 X (X — 4) X 1

Bz(—l),part(x) — Bé—l),hom(x)J

Ox@_@(MDWoﬁcw
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1L-QED vertex

» Now we can expand everything and integrate. Note that since we are expanding in x, all the
integrals are trivial.

~1
—1),hom
B{DP(x) = ¢y x 712 (1 1x I X x* > X7+ O(x") ) X x’ (x’l— 4) (BZ( | (X)>
: ’ 8" 128" 1024 / /
/ x | / o) 3 | , " 3
Bz(—l),hom(x) o J 1 1 X X X 6 Co_l 1 X X X 56 )| dx =
o |4x 16 64 256 1024 8 128 1024
1 X x? x° A
= — A | | - O(x%)

2 12 60 280

»  The complete solution is obtained by combining the homogeneous one with the particular one.

3x? 5x°> 1 X x? x>
BEU(x) = ¢ BEDhomyy 4 gEDpartiyy — o =12 [ 1 1 2 | F O | + | | | - O(x*
, W =cB T+ B = cx st 128 T ooz T O >t 12 60 T a0 T YWY
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1L-QED vertex

. The last thing to do is to fix the constant using the boundary condition: Bz(_l)(O) = —

3x*  5x° ]
BPx)=cx7 12 [ 1+ e O(x*) | + -
2 8 128 1024 2 12

»  From the dif

————————— —
= _ —

1 X X X A
= I I I I@(x)
2 12 60 280

‘erential equations we read the position of

the singulari
centred in x

ies: x = 0 and x = 4. Since the series is

60 280

Master Integral B2(x) — Order 0(6‘1)

15F
10F

0.5.-

3
Al @(x4)> —

= (), this translate to the fact that the s
solution converges inside the interval (—4.,4);

» We will come back later on the analytic continuation.

19
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Logarithmic expansion

e —_—

» |In the previous case we expanded on x = (0, which was a possibly singular point, however, the
solution was regular. That means that x = 0 is a pseudo-threshold.

»  We could have expanded around a regular point. In this case we always have r > 0, hence, the
solution Is a simple Taylor series.

»  Another possibility is to expand on top of a threshold, e.g. in the 1L-QED vertex, x = 4. The solution

could contain terms like:
1

x—4

or log(x — 4)

» These terms could arise from variation of parameters method. In particular:

rX

fpart(x) =fh0m(x) gnon hom(x/) (fhom(x/))_l dx’
J0

could contain either 1/x™ with m > 1 or 1/x. At higher order in €, g"°" "*™(x) may directly contains log.

20



Logarlthmlc expanlon

» For example, if we try to solve the order @(60) of the same problem, but this time around x = 4, we
get:

B{")(x) = 1.28861 —0.18699 (x —4) +0.0357314 (x —4)* — 0.00748665 (x —4)° + O(x —4)* +

1
+ ( — (4.9348 + 0.906688i) + (0.61685 + 0.113336i) (x —4) +

Vx—4
+(0.0240957 + 0.00442719i) (x — 4)° + O(x — 4)*) +
log(x — 4) . . : 2 : 3 1
+ ( — 1.5708i + 0.19635i (x —4) — 0.0368155: (x —4)~ + 0.0076699i (x —4)° + O(x — 4) )
vVx—4

Master Integral B2(x) - Order O(e?)

~  —— Series Solution




—_———— —_————— e e e = = — ———————————————— —— —— = = _—

Triangle d syst

» With this approach we can solve all the systems which are in triangular form, i.e. those systems for
which it has the following form:

Bl * (0 0 0 0 Bl

7 | B * % 0 0 0 || b5
E B3 =1 *x *x % 0 0 B3
B, L S G G ¢ * B,

» The idea, hence, Is to start from the lowest order in €, solve the first equation, substitute the result In

the second and so on. Practically, instead of solving an n X n system, we are solving 7 single
equations.
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e ——————— - - - — Eep——— - = _— . = =

Coupled systems

» Obtaining a system in a triangular form is not always possible, especially if the problem has an elliptic
nature. In order to solve the homogeneous system of equation we have to use a generalisation of
Frobenius method. Let us consider for example the following system:

B 3B 1 9
B(x) = 1:6) i(x) | (2 x)
B(x) = 2(x = 3)B;(x)  2(5x—9)By(x) 648 + (4n” — 273)x + 27x"
2 X(x=9Dx—1)  x(x—9)(x—1) 12x(x = 9)(x — 1)

» Let us start from solving the homogeneous part of the system around x = 1. To do so let us use the
following ansatz:

©9)

Bix)=x-1) Z a; (x — 1)

1=0

B,(x) =(x—-1) Z b, (x — 1)!
i=0

23



e ———————— = S — — . I
e I e s — — = - — == === — ===

Coupled systems

» et us substitute and collect order the different orders in (x — 1):

1 rag=>0 —ag+a;+ra;+3by=0
@( ): g 6(x—-1)° |
x—1 — —by+1by =0 —(=1lag+8a +34by+167b;) =0

ay—a;+2a,+ra,—3by+3b;,=0
r=0, ay=2by} Ox—-1) :

— (85.ag— 88 a, + 64 @y — 254 by + 272 b, + 128 b, + 128 r b)) =0

»  Now we can solve all the systems and we find a solution:

143 Ty TS
N ((x_1)2 5(x4 D 87(x64 1) 91(x64 D° @(x—1)6>

2(x — 1 11x—=1D?% 47x-=1)Y° 97x-1D* 3161 —1)7
B"(x) = a, Sl | oD oD | “—D il - O(x — 1)°
3 12 48 96 3072
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—_———— —_————— e e e = = — ———————————————— —— —— = = _—

Coupled systems

he solution we found to the homogeneous equation depends on 1 arbitrary constant a;:

143 Ty 1S
B = ((x_1)2 5(x4 D 87(x64 1) 91(x64 D’ L oo 1)6>

2(x — 1 11x—-1?% 47x-1Y° 97x-1)* 3161(x—1)°
Blon(y) = g ( 22D M= D7 H— D7 97— D) O 4 G- 18
3 12 48 96 3072

owever, this is a 2 X 2 system and so we expected 2 linearly independent solutions! This is because
the ansatz we chose was not general enough. Let us consider, hence:

Bi(x)=(x—1) Y a;(x— 1) +loglx—1) (x=1)" Y ¢, (x— 1)
=0 i=0

By(x) = (x=1) ) b(x=1)+logx—1) (x=1)" Y d; (x— 1)
i=0 1=0

25



Coupled systems

»  The procedure Is the same, the only di

(x — D™og(x — 1)

@<log(x—1)> :
x—1

{

I‘CO=O

2

»  And the final solution is

BIo"(x) = a

Bé’om(x) = a

1 —

2

x—1
_|_

x—1 7(x—=1)?

O(x — 1)

128

~(co=2dy+2rdy) =0

e —— e —— — S e
_— —

N— {r=0, ¢y =2d,}

+@(x—1)4+<

16

128

T1(x — 1)°
N ( )

1024

12

+@@—1f+<—

16 64

133
-Hh<@—lf—5@4r)++0@—lf>;

43

— _1)\2 _1\3
26D G 1)-f”“:])-+@@—4f>

( :

26

x—1

3

_|_

)1

3@-1?_1ﬂx—n3

nu-1f_4nm—n3

64

+@u—1f>mgx—n

I’CZO+CO=()

(ag=2by+2rby+2dy) =0

256

ference Is that now we collect also powers of

(x—l
O
1

+@@—1f)mgx—n




Coupled systems

_———— —_——— e e = = —_— = —————— = s

. We can organise it in a matrix: B"°"™(x) = A(x) ¢. Where Alj(x) s the i-th solution, where we put all
dy

p ) . We can use again the method of
2

the constant to 0 except the j-th to 1. In this case ¢ = (

variation of parameters, now all quantities are matrices and vectors.

R 0 — L
BP(x) = A(x) ¢(x) — aB (x) = M(x) B (x) + " ""(x)

A'() + AQ) Z(x) = MEOAG) 20) + ")
E/(x) — A—l(x) §n0n hOm(x) —3 ?part(x) — A(X) J'x A—l(x/) é’nan hOm(x/) dx/
0

27



Coupled systems

e ——— = = = e e — —= = = = _— . e ——————— —

We can invert the matrix and perform the integration easily. Once again, by expanding g"°" "*™(x)
around x = 1, we have to integrate only terms like (x — 1)™ log"(x — 1).

Finally, the general solution is B (x) = A(x) ¢ + BP*'(x), and the constants are fixed using the
boundary conditions:

59 % 3

Lo 139
Bl ()C) — ?+T+§(X— 1)

1 _ 2_1 TS ey R Y 185
4(x 1) 3(x 1) +384(x )"+ 0O0(x—1)

1
Byo"(x) = —

2

” e 1 2 1P 22 ) 4 0 — 1)
— — —(x—-1)y——(x- —(x — X —
6 4 9% 576

Since there is the inversion of a matrix if the system is not in triangular form, it is computationally

more expensive to solve it. [t might be worth to try to decuple the system so that the resolution is
guicker.

In principle with this approach we could solve any system of differential equations. Facing all
types of physical problems, including the elliptic ones.

28



Boundary Conditions

point;

he first one is to provide the value of the master integral in a regular or a pseudo-threshold

2 3 2 3
fx)=c (l—f—gi— L +@(x4))+(lx—7i+2i+@(x4)> 1(0) =1

5 50 750 2 40 75

he second is to Impose the regularity of the solution in a pseudo-threshold point;

3 2 5 3 1 2 3
) = ¢ x 2 <1+1+1—;8+ x +@<x4>>+(—+i+x—+x—+@<x4>>

3 1024 2 12 60 280

A third possibility is to impose the coefficient of the divergent part, such as log x or 1/x™.

Th
AL

J(x) = +0(x—4) J(0) =

e boundary cond
Xillary mass flow

it —ic+log?2 log 2

FO(x —4)
x—4 Vx—4

tions are, in general, not trivial to obtain. Some common techniques are the

method, direct integration outside of the physical region, Monte-Carlo integration,

eXxX

pansion by region.
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»  \When wor
and Z. Int

<iIng on EW calculations, we have to deal with intermediate unstable particles, such as W

NIS case, It Is useful to perform the calculations in the complex-mass scheme;

» For these particles we consider their mass to be complex-valued:

uy = my — ilymy -
The complex mass scheme regularises the divergences -
coming from the tree-level propagators, while preserving S
gauge invariance. 1 .
> m‘z, + 10 -02{ .= - - ggglif;smass
owever, it requires all the masses to be complex-valued, b e
included the ones in the Feynman integrals. It we utilise B I o T T w1
adimensional variables, they become complex-valued as Vs [GeV]
well: Ky Ky
X = > —
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Analytic continuation

— e e —— —_—

» As we saw, the analytic continuation must be discussed In the entire complex plane

» Power series have a limited radius of convergence.
»  The radius Is determined by the position of the nearest singularity.
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Analytic continuation

» As we saw, the analytic continuation must be discussed In the entire complex plane

» Power series have a limited radius of convergence.
»  The radius Is determined by the position of the nearest singularity.

31




Analytic continuation

» As we saw, the analytic continuation must be discussed In the entire complex plane

» Power series have a limited radius of convergence.
»  The radius Is determined by the position of the nearest singularity.

31




faylor vs Logarithmic

» When moving along an horizontal line, the Feynman prescription plays an important role
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Analytic continuation

» When moving along an horizontal line, the Feynman prescription plays an important role
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4

Automatlc packages

This idea was first introduced In the study of Higgs+jet production at 2-loop [F Moriello,

arXiv:1907.13234].

The first publicly available Mathe
[IM.Hidding, arXiv:2006.05510].
real-valued variables. For this

The main limitati

reason, It IS su

matica package |

[10

ita

N of DiffExp
dle with QC

D calculatio

Another Mathematica implementation is in the package SeaSyde [TA,

R. Bonciani, S. Devoto, N. Rana, A. Vicini, arXiv:2205.03345].
first time we Introduced the algorithm for the analytic continuatio

complex plane, thus allowing it to be used in EW calculations.

example it has been used for the calculation of NNLO mixed QC

corrections to the Drell-Yan process.
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Automatic packages

A third independent implementation is in the Mathematica package AMFlow [X. Liu, Y. Ma,
arxiv:2201.11669|. In particular, they use the auxiliary mass flow method for automatically
obtaining the boundary conditions.

[ dqu ]
I 9 '9d9 —
a3 5p 1) [ Emm (D, —nl .. (D, — ]

In the limit » — o0 the integrals simplify and thus they can be easily evaluated analytically. Then we
can write down the differential equation w.r.t. #, and, finally, recover the desired integral by evolving
I, . fromootoi0~

07— AmI I'=Tim 1,,(n)
6}7 aux aux n—i0
All three packages can solve all type of problems, including elliptic ones.

A fourth group is working on a C++ implementation LoopTransport [I. Neumann/, however, this Is
not public yet.
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Neutral-current Drell-Yan "~ o

» The first physical application of SeaSyde was for the calculation of the 1 - \ [
mixed QCD-EW corrections for the Neutral-Current Drell-Yan

[TA, R. Bonciani, S. Devoto, N.Rana, A.Vicini, arXiv:2201.01754]

o(0:V) @' @ """ @ """ Cy @ <{

- - o i e ™
+ag oY + a 6OV V :D :D """ @ """ SO} W
- “ - o m
+OcS2 o>V 4 Ag A oD 4 a? 602 4 Q: Q: D ______ { <D ______ Q{
. m o . m m
» We had 36 Master Integrals with 2 internal W' Y V N N ]j
(complex-)massive lines. For 31 out of 36 we had an E E E <q E
expression in terms of Generalised PolyLogarithms (GPLS). E — N L
owever, for 5 of them we only had an expression in terms of : o
Chen-Goncharov integrals, which are not suitable for a S[ E - -

numerical evaluation.
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31 masters provide cross checks with analytic results, 5 are a prediction:;
complex mass scheme smoothens the behaviour at threshold.
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Neutral-current Drell-Yan

» The boundary conditions are imposed in the euclidean region, outside of the physical one.

terms in the series required.

Number of terms Precision Time
50 terms 10~14 ~14 min
75 terms 1017 ~26 min
100 terms 107> ~50 min
125 terms 107 ~75 min
150 terms 1074 ~90 min

» (GIven the execution time it Is iImpossible to iImplement directly in a

Monte-Carlo generator. For this reason, we created a grid for
correction and then, thanks to its smoothness we can interpo

The grid consist of 3250 point spanning \/E € [40 GeV, 13 TeV]and °

cosd e [—1,1].
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ransporting the solution to the physical region requires different times depending on the number of




This process, even if similar to the previous one, is more complicated 7
because now we have integrals with two different internal massive ¢

lines.

Those integrals belong to a two-loop box integral family. In this family we have 56 masters. We

could proceed in the same way as before, that
differential equations w.r.t. s and f to create a g

Another possibility is to write down the differen

s find the boundary conditions and then use the
rid which covers the entire phase space.

lal equations w.r.t. one of the two masses and use

the grid of the neutral current Drell-Yan as a bo

Hz

undary condition.
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Conclusion

The method of differential equations, and in particular its semi-ana
technique for evaluating Feynman integrals. In particular, it is a me

vtical approach, is a

completely general. Moreover, we can easily control the numerical

orecision of the resu

powerful

'hod easy to automatise and

{;

lts main problem right now is the speed, mainly due to the fact that all its implementations are in
Mathematica. For this reason we have to rely on pre-computed grids which are then interpolated in

Monte-Carlo ger

We implementec

handle arbitra

V|

erator:

nternal complex masses;

The method has been already applied in the calcu

Neutral current

Drell-Yan and to the charged curre
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ation of the mixed QCD-

Nt case (not yet public).

the method in the publicly available Mathematica package Seasyde, which can

—\\V corrections to the



THANK YOU



