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The Standard Model
‣ The Standard Model is the best theory, so far, for describing the elementary particles and their 

interactions;

‣ During the years it has proven itself very 
successful in explaining and predicting with 
extreme precisions a big variety of phenomena 
in fundamental interactions, spanning several 
orders of magnitude;


‣ The discovery of the Higgs boson in 2012 
confirmed one of the most important predictions 
of the Standard Model. 
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What’s next?
‣ The SM has still many open questions, e.g. gravity, neutrino masses, dark matter, …

‣ In order to answer those questions we need to find a model which goes Beyond the Standard 

Model (BSM). However, no experimental evidence of any BSM model has been found in the last 
years;


‣ New physics effects could still enter in virtual corrections, leading to some deviations of 
experimental measurements from theoretical predictions. 
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‣ In order to appreciate, and then interpret 
through a dedicated analysis, such 
differences, we need theoretical 
predictions at least as accurate as the 
experimental value.
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Higher order corrections
‣ In order to have more precise theoretical predictions we have to include higher order corrections, 

either in QCD or in EW;

‣ One of the main bottlenecks in these calculations comes from the evaluations of virtual corrections 
due to the high number of Feynman integrals with different energy scales;
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Workflow of a Multi-loop computation
Process definition ‣ 


‣ Which particles are massless?

‣ …

𝒪(α2
S), 𝒪(αSα), 𝒪(α2), …

5



Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

‣ Some publicly available code: FeynArts or QGRAF
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Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

‣ Simplifying expressions;

‣ Handling  in d dimensions;

‣ Computing traces of -matrices;

‣ Reduce tensor loop-integrals to scalar ones;

γ5

γ
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‣ Publicly available code: KIRA, FIRE or REDUZE2, … 

 
N

∑
i=1

ciIi ⟶
m

∑
i=1

c̃i MIi , m ≪ N

Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

Reduce to a set of Master 
Integrals
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‣ Different approaches are possible: Feynman parameters, 
Monte Carlo integration, Tropical Geometry, … 


‣ One possibility is the Method of differential equations 
(with a semi-analytical approach);


‣ Complex masses for gauge bosons;


Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

Reduce to a set of Master 
Integrals

Evaluation of MIs
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‣ Counter-terms for UV renormalisation;

‣ Subtraction of IR divergences;

Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

Reduce to a set of Master 
Integrals

Evaluation of MIs

Subtraction of divergences
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‣ Create a numerical grid;

‣ Combine with real contributions and perform a 

Monte-Carlo integration over phase-space;

‣ Phenomenology


Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

Reduce to a set of Master 
Integrals

Evaluation of MIs

Subtraction of divergences

Production of a numerical grid
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THIS TALK!

Workflow of a Multi-loop computation
Process definition

Generation of Feynman 
diagrams

Computation of interference 
terms

Reduce to a set of Master 
Integrals

Evaluation of MIs

Subtraction of divergences

Production of a numerical grid
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Evaluating Feynman integrals
‣ What we would like to compute are objects like this:

I(αi; sj, d) = ∫
l

∏
k=1

ddqk

iπd/2

1
𝒟α1

1 … 𝒟αn
n

d = 4 − 2ϵ

kinematic variables e.g. (p1 − q1)2 − m2 + iδ

‣ A given set of denominators  constitutes an integral family. Inside an integral family an integral is 
uniquely identified by the set of the different powers  to which the denominators are raised.


‣ Using Integration by Parts (IBP) identities, we can express all the integrals of the given integral 
family in terms a smaller subset, the so-called Master Integrals.

𝒟i
αi
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How to compute the Master Integrals?
‣ Many techniques have been developed during the years, each with pros and cons. Here I will focus 

on the method of differential equations.


‣ The idea is that by differentiating a master w.r.t. a kinematical invariants we obtain a first order linear 
differential equations, whose solution is the master integrals we are interested in.


‣ By repeating the same process for every master integral we obtain a system of first order linear 
and homogeneous differential equations.

∂
∂sk

I(αi; sj, d) = ∑ scalar integrals = ∑master integrals

IBP
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d
dp2

=
1

2p2
−

1
2p2

−
1
2

A very simple example: 1L bubble 

Iα1 α2
(p2, m2, d) = ∫

ddq
iπd/2

1

[q2 − m2]α1 [(q − p)2 − m2]α2

‣ This problem has 2 kinematic invariants,  and , and 2 master integrals:  and 


‣ By differentiating w.r.t.  we obtain

p2 m2 I10 I11

p2

d
dp2

= 0
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A very simple example: 1L bubble 

Iα1 α2
(p2, m2, d) = ∫

ddq
iπd/2

1

[q2 − m2]α1 [(q − p)2 − m2]α2

‣ This problem has 2 kinematic invariants,  and , and 2 master integrals:  and 


‣ By differentiating w.r.t.  we obtain

p2 m2 I10 I11

p2

d
dp2

= 0

d
dp2

=
d − 2

p2(4m2 − p2)
−

(d − 4)p2 + 4m2

2p2(4m2 − p2)
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What are we looking for?
‣ So we just have to solve a system of first order differential equations… HOW?

‣ Ideally, we would like:


• A method easy to automatise


• A solution compact and easy to handle to allow for simplifications


• A solution fast to evaluate to be implemented in a Monte-Carlo

• To have high control on numerical precision

2Reℳ(2)ℳ(0)* = ∑
i

ci MIi 𝒪(10−10 − 1010)
𝒪(10 − 102)

Li2(x) + Li2 ( 1
x ) = −

π2

6
−

log2(−x)
2

Li2(x) + Li2 (1 − x) =
π2

6
+ log(x)log(1 − x)
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Analytical solution
‣ There are many possibilities to solve the system, each with pros and cons

‣ The first method is to solve it analytically. This is, by far, the preferable method.


‣ The result is provided in closed form as a combination of elementary and special functions, such as 
Generalised PolyLogarithms. Of these functions we know functional relations and series 
expansion;


‣ However, especially when increasing the number of scales or legs, an analytical expression in terms 
of known classes of functions might not be available. Moreover, the numerical evaluation of the result 
might require a long time with external libraries.

I(finite)1,1 (p2, m2) = 2 − γE − log m2 +
m2

p2 ( 1
r

− r) log r with r =
−p2 + 2m2 + (p2 − 2m2)2 − 4m4

2m2

G(a1, …, an; z) = ∫
z

0

dt
t − a1

G(a2, …, an; z) and G( ⃗0n; z) =
1
n!

logn z
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Numerical solution
‣ The second possibility is to solve the equations numerically. Now the result is provided as a 

numerical grid.


‣ This can be done with methods such as Runge-Kutta. There are some examples in literature, 
however this has not received too much attention. The main problem is the difficulty in controlling the 
numerical precision of the solution.
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11



Semi-analytical solution
‣ A third possibility could be to use a semi-analytical approach. In this case the result is provided as 

a power series which can be easily evaluated in every point of the domain.


‣ The method has been firstly implemented in the Mathematica package DiffExp for a real kinematic 
variable [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510]


‣ The main advantage is that all the calculations can be carried out analytically. 

‣ This method is quite easy to automatise. Provided that we have infinite time and space, we could 

achieve arbitrary precision. Moreover, once we have the solution, it can be evaluated numerically in 
a negligible amount of time.


‣ However, series have a limited radius of convergence, hence, an algorithm for performing the 
analytic continuation of the solution must be provided.


I(finite)1,1 (p2, m2 = 1) = − γE +
1
6

p2 +
1
60

(p2)2 +
1

420
(p2)3 +

1
2520

(p2)4 +
1

13860
(p2)5 + …
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1L-QED vertex

p2
1 = p2

2 = m2
e

(p1 + p2)2 = s

‣ This problem has 2 masters, which can be chosen as the massive tadpole and the scalar triangle;


‣ The singularities of the problem can be read from the coefficient matrix. 

d
ds

B1 = 0

In1n2n3
= ∫

ddq
iπd/2

1

[q2]n1 [(q + p1)2 − m2
e ]n2 [(q − p2)2 − m2

e ]n3

d
ds

B2 =
ϵ − 1

s m2
e (s − 4m2

e )
B1 +

2m2
e − s − sϵ

s (s − 4m2
e )

B2
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1L-QED vertex
‣ For simplicity we introduce an adimensional variable . This reduces the number of 

parameters the problem depends on, thus speeding up the computation.

‣ The first step is to separate each order in . To do so we can read from the boundary conditions 

the minimum order in , and write . Then we can collect order by order in :


x = s/m2
e

ϵ

ϵ Bi =
+∞

∑
j=ϵmin

B( j)
i ϵ j ϵ

𝒪(1/ϵ) :

𝒪(ϵ0) :

d
dx

B(−1)
1 = 0

d
dx

B(−1)
2 = −

1
x (x − 4)

B(−1)
1 −

x − 2
x (x − 4)

B(−1)
2

d
dx

B(0)
1 = 0

d
dx

B(0)
2 =

1
x (x − 4)

B(−1)
1 −

1
x (x − 4)

B(0)
1 −

1
x − 4

B(−1)
2 −

x − 2
x (x − 4)

B(0)
2
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1L-QED vertex
‣ Let us start from  and expand around . The first equation is trivial and gives: 


‣ First of all we start from the homogeneous equation. For that we use the Frobenius method, i.e. we 

use the ansatz , with .  


𝒪(1/ϵ) x = 0 B(−1)
1 (x) = 1

B(−1),hom
2 (x) = xr

∞

∑
i=0

cixi r ∈ ℚ

d
dx

B(−1)
2 (x) = −

x − 2
x (x − 4)

B(−1)
2 (x) −

1
x (x − 4)

B(−1)
2 (0) =

1
2

xr [c1 + 2xc2 + 3x2c3 + 𝒪(x3)] + rx−1+r [c0 + xc1 + x2c2 + 𝒪(x3)] =

= [ 1
8

−
1
2x

+
x

32
+

x2

128
+ 𝒪(x3)] xr [c0 + xc1 + x2c2 + 𝒪(x3)]d

dx
B(−1)

2

−
x − 2

x (x − 4) B(−1)
2
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1L-QED vertex
‣ Let us expand everything 


‣ And collect the different powers of :
x

r c0 x−1+r + (1 + r) c1 xr + (2 + r) c2 x1+r + (3 + r) c3 x2+r + 𝒪(x3+r) =

= −
c0

2
x−1+r + ( c0

8
−

c1

2 ) xr +
1
32 (c0 + 4c1 − 16c2) x1+r +

1
128 (c0 + 4c1 + 16c2 − 64c3) x2+r + 𝒪(x3+r)

r c0 = −
1
2

c0

(1 + r) c1 =
1
8

−
c1

2

(2 + r) c2 =
1
32 (1 + 4c1 − 16c2)

(3 + r) c3 =
1

128 (1 + 4c1 + 16c2 − 64c3)

r = −
1
2

c1 =
1
8

c0

c2 =
3

128
c0

c3 =
5

1024
c0
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Variation of parameters
‣ Now that we have a solution to the homogeneous equation we can obtain a particular one with the 

method of variation of parameters, i.e. we look for a particular solution of the form: 
. If we substitute in the original equation we get
B(−1),part

2 (x) = C(x) B(−1),hom
2 (x)

C′￼(x) B(−1),hom
2 (x) + C(x) B(−1),hom′￼

2 (x) = −
x − 2

x (x − 4)
C(x) B(−1),hom

2 (x) −
1

x (x − 4)

C′￼(x) B(−1),hom
2 (x) = −

1
x (x − 4)

C′￼(x) = −
1

x (x − 4) (B(−1),hom
2 (x))

−1

C(x) = ∫
x

0
−

1
x′￼ (x′￼− 4) (B(−1),hom

2 (x′￼))
−1

dx′￼

B(−1),part
2 (x) = B(−1),hom

2 (x)∫
x

0
−

1
x′￼ (x′￼− 4) (B(−1),hom

2 (x′￼))
−1

dx′￼
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1L-QED vertex
‣ Now we can expand everything and integrate. Note that since we are expanding in , all the 

integrals are trivial. 


‣ The complete solution is obtained by combining the homogeneous one with the particular one.


x

B(−1),part
2 (x) = c0 x−1/2 (1 +

1
8

x +
3

128
x2 +

5
1024

x3 + 𝒪(x4)) × −
1

x′￼ (x′￼− 4)

× ∫
x

0 [ 1
4x′￼

+
1
16

+
x′￼

64
+

x′￼2

256
+

x′￼3

1024
+ 𝒪(x′￼4)] c−1

0 x′￼1/2 (−
x′￼

8
−

x′￼2

128
−

x′￼3

1024
+ 𝒪(x′￼4)) dx′￼ =

(B(−1),hom
2 (x))

−1

B(−1),hom
2 (x)

=
1
2

+
x

12
+

x2

60
+

x3

280
+ 𝒪(x4)

B(−1)
2 (x) = c B(−1),hom

2 (x) + B(−1),part
2 (x) = c x−1/2 (1 +

x
8

+
3x2

128
+

5x3

1024
+ 𝒪(x4)) + ( 1

2
+

x
12

+
x2

60
+

x3

280
+ 𝒪(x4))
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1L-QED vertex
‣ The last thing to do is to fix the constant using the boundary condition: B(−1)

2 (0) =
1
2

B(−1)
2 (x) = c x−1/2 (1 +

x
8

+
3x2

128
+

5x3

1024
+ 𝒪(x4)) + ( 1

2
+

x
12

+
x2

60
+

x3

280
+ 𝒪(x4)) =

=
1
2

+
x

12
+

x2

60
+

x3

280
+ 𝒪(x4) c = 0

‣ From the differential equations we read the position of 
the singularities:  and . Since the series is 
centred in , this translate to the fact that the 
solution converges inside the interval ;


‣ We will come back later on the analytic continuation.

x = 0 x = 4
x = 0

(−4,4)
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Logarithmic expansion
‣ In the previous case we expanded on , which was a possibly singular point, however, the 

solution was regular. That means that  is a pseudo-threshold. 

‣ We could have expanded around a regular point. In this case we always have , hence, the 

solution is a simple Taylor series. 

‣ Another possibility is to expand on top of a threshold, e.g. in the 1L-QED vertex, . The solution 

could contain terms like:


‣ These terms could arise from variation of parameters method. In particular:


could contain either  with  or . At higher order in ,  may directly contains . 

x = 0
x = 0

r ≥ 0

x = 4

1/xm m > 1 1/x ϵ gnon hom(x) log

1
x − 4

or log(x − 4)

f part(x) = f hom(x)∫
x

0
gnon hom(x′￼) (f hom(x′￼))−1 dx′￼
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Logarithmic expansion
‣ For example, if we try to solve the order  of the same problem, but this time around , we 

get:

𝒪(ϵ0) x = 4

B(0)
2 (x) = 1.28861 − 0.18699 (x − 4) + 0.0357314 (x − 4)2 − 0.00748665 (x − 4)3 + 𝒪(x − 4)4 +

+
log(x − 4)

x − 4
( − 1.5708i + 0.19635i (x − 4) − 0.0368155i (x − 4)2 + 0.0076699i (x − 4)3 + 𝒪(x − 4)4)

+
1

x − 4
( − (4.9348 + 0.906688i) + (0.61685 + 0.113336i) (x − 4) +

+(0.0240957 + 0.00442719i) (x − 4)3 + 𝒪(x − 4)4) +
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Triangle systems
‣ With this approach we can solve all the systems which are in triangular form, i.e. those systems for 

which it has the following form:


‣ The idea, hence, is to start from the lowest order in , solve the first equation, substitute the result in 
the second and so on. Practically, instead of solving an  system, we are solving  single 
equations.


ϵ
n × n n

d
dx

B1
B2
B3
⋮
Bn

=

⋆ 0 0 0 ⋯ 0
⋆ ⋆ 0 0 ⋯ 0
⋆ ⋆ ⋆ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
⋆ ⋆ ⋆ ⋆ ⋯ ⋆

B1
B2
B3
⋮
Bn
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Coupled systems
‣ Obtaining a system in a triangular form is not always possible, especially if the problem has an elliptic 

nature. In order to solve the homogeneous system of equation we have to use a generalisation of 
Frobenius method. Let us consider for example the following system:


‣ Let us start from solving the homogeneous part of the system around . To do so let us use the 
following ansatz:


x = 1

B′￼1(x) =
B1(x)

x
−

3B2(x)
x

+ ( 1
2

−
9
x )

B′￼2(x) = −
2(x − 3)B1(x)

x(x − 9)(x − 1)
+

2(5x − 9)B2(x)
x(x − 9)(x − 1)

−
648 + (4π2 − 273)x + 27x2

12x(x − 9)(x − 1)

B1(x) = (x − 1)r
∞

∑
i=0

ai (x − 1)i

B2(x) = (x − 1)r
∞

∑
i=0

bi (x − 1)i
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Coupled systems
‣ Let us substitute and collect order the different orders in :


‣ Now we can solve all the systems and we find a solution:


(x − 1)

𝒪 ( 1
x − 1 ) : {

r a0 = 0
a0

2 − b0 + rb0 = 0
𝒪 (x − 1)0 : {

−a0 + a1 + r a1 + 3 b0 = 0
1

16 (−11 a0 + 8 a1 + 34 b0 + 16 r b1) = 0

𝒪 (x − 1) : {
a0 − a1 + 2 a2 + r a2 − 3 b0 + 3 b1 = 0

1
128 (85 a0 − 88 a1 + 64 a2 − 254 b0 + 272 b1 + 128 b2 + 128 r b2) = 0

Bhom
1 (x) = a1 ((x − 1)2 −

5(x − 1)3

4
+

87(x − 1)4

64
−

91(x − 1)5

64
+ 𝒪(x − 1)6)

Bhom
2 (x) = a1 (−

2(x − 1)
3

+
11(x − 1)2

12
−

47(x − 1)3

48
+

97(x − 1)4

96
−

3161(x − 1)5

3072
+ 𝒪(x − 1)6)

{r = 0, a0 = 2b0}
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Coupled systems
‣ The solution we found to the homogeneous equation depends on 1 arbitrary constant : 


‣ However, this is a  system and so we expected 2 linearly independent solutions! This is because 
the ansatz we chose was not general enough. Let us consider, hence:


a1

2 × 2

Bhom
1 (x) = a1 ((x − 1)2 −

5(x − 1)3

4
+

87(x − 1)4

64
−

91(x − 1)5

64
+ 𝒪(x − 1)6)

Bhom
2 (x) = a1 (−

2(x − 1)
3

+
11(x − 1)2

12
−

47(x − 1)3

48
+

97(x − 1)4

96
−

3161(x − 1)5

3072
+ 𝒪(x − 1)6)

B1(x) = (x − 1)r
∞

∑
i=0

ai (x − 1)i + log(x − 1) (x − 1)r
∞

∑
i=0

ci (x − 1)i

B2(x) = (x − 1)r
∞

∑
i=0

bi (x − 1)i + log(x − 1) (x − 1)r
∞

∑
i=0

di (x − 1)i
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Coupled systems
‣ The procedure is the same, the only difference is that now we collect also powers of 




‣ And the final solution is


(x − 1)mlog(x − 1)

𝒪 ( log(x − 1)
x − 1 ) : {

r c0 = 0
1
2 (c0 − 2 d0 + 2 r d0) = 0

{r = 0, c0 = 2d0}

𝒪 ( 1
x − 1 ) : {

r a0 + c0 = 0
1
2 (a0 − 2 b0 + 2 r b0 + 2 d0) = 0

Bhom
1 (x) = a0 1 −

x − 1
2

+
9(x − 1)3

128
+ 𝒪(x − 1)4 + ( 3(x − 1)2

16
−

15(x − 1)3

64
+ 𝒪(x − 1)4) log(x − 1) +

+a2 ((x − 1)2 −
5(x − 1)3

4
+ +𝒪(x − 1)4);

Bhom
2 (x) = a0

1
2

−
x − 1

16
−

7(x − 1)2

128
+

71(x − 1)3

1024
+ 𝒪(x − 1)4 + (−

x − 1
8

+
11(x − 1)2

64
−

47(x − 1)3

256
+ 𝒪(x − 1)4) log(x − 1) +

a2 (−
2(x − 1)

3
+

11(x − 1)2

12
−

47(x − 1)3

48
+ 𝒪(x − 1)4)
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Coupled systems
‣ We can organise it in a matrix: . Where  is the -th solution, where we put all 

the constant to  except the -th to . In this case . We can use again the method of 

variation of parameters, now all quantities are matrices and vectors.


⃗B hom(x) = A(x) ⃗c Aij(x) i

0 j 1 ⃗c = (a0
a2)

⃗B part(x) = A(x) ⃗c(x)
∂
∂x

⃗B (x) = M(x) ⃗B (x) + ⃗gnon hom(x)

A′￼(x) ⃗c(x) + A(x) ⃗c′￼(x) = M(x)A(x) ⃗c(x) + ⃗gnon hom(x)

⃗c′￼(x) = A−1(x) ⃗gnon hom(x) ⃗B part(x) = A(x) ∫
x

0
A−1(x′￼) ⃗gnon hom(x′￼) dx′￼
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Coupled systems
‣ We can invert the matrix and perform the integration easily. Once again, by expanding  

around , we have to integrate only terms like . 

‣ Finally, the general solution is , and the constants are fixed using the 

boundary conditions:


‣ Since there is the inversion of a matrix if the system is not in triangular form, it is computationally 
more expensive to solve it. It might be worth to try to decuple the system so that the resolution is 
quicker.


‣ In principle with this approach we could solve any system of differential equations. Facing all 
types of physical problems, including the elliptic ones.

⃗gnon hom(x)
x = 1 (x − 1)m logn(x − 1)

⃗B (x) = A(x) ⃗c + ⃗B part(x)

Bhom
1 (x) =

59
8

+
π2

4
+

3
8

(x − 1) +
1
4

(x − 1)2 −
1
3

(x − 1)3 +
139
384

(x − 1)4 + 𝒪(x − 1)5

Bhom
2 (x) =

1
2 ( π2

6
− 1) +

1
4

(x − 1)2 −
25
96

(x − 1)3 +
155
576

(x − 1)4 + 𝒪(x − 1)5
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Boundary Conditions
‣ The first one is to provide the value of the master integral in a regular or a pseudo-threshold 

point;


‣ The second is to impose the regularity of the solution in a pseudo-threshold point;


‣ A third possibility is to impose the coefficient of the divergent part, such as  or .


‣ The boundary conditions are, in general, not trivial to obtain. Some common techniques are the 
Auxiliary mass flow method, direct integration outside of the physical region, Monte-Carlo integration, 
expansion by region.

log x 1/xm

f(x) = c x−1/2 (1 +
x
8

+
3x2

128
+

5x3

1024
+ 𝒪(x4)) + ( 1

2
+

x
12

+
x2

60
+

x3

280
+ 𝒪(x4))

f(x) =
iπ − ic + log 2

x − 4
+ 𝒪(x − 4) f(0) =

log 2

x − 4
+ 𝒪(x − 4)

f(x) = c (1 −
x
5

−
3x2

50
−

11x3

750
+ 𝒪(x4)) + ( 1

2
x −

7x2

40
+

2x3

75
+ 𝒪(x4)) f(0) = 1
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Complex Mass Scheme
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‣ When working on EW calculations, we have to deal with intermediate unstable particles, such as W 
and Z. In this case, it is useful to perform the calculations in the complex-mass scheme;


‣ For these particles we consider their mass to be complex-valued:

μ2
V = m2

V − iΓVmV

‣ The complex mass scheme regularises the divergences 
coming from the tree-level propagators, while preserving 
gauge invariance. 


‣ However, it requires all the masses to be complex-valued, 
included the ones in the Feynman integrals. If we utilise 
adimensional variables, they become complex-valued as 
well:

1
s − m2

V + iδ

x =
s

m2
V

→
s

μ2
V
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Analytic continuation
‣ As we saw, the analytic continuation must be discussed in the entire complex plane

‣ Power series have a limited radius of convergence. 

‣ The radius is determined by the position of the nearest singularity.
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‣ As we saw, the analytic continuation must be discussed in the entire complex plane

‣ Power series have a limited radius of convergence. 

‣ The radius is determined by the position of the nearest singularity.
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‣ As we saw, the analytic continuation must be discussed in the entire complex plane

‣ Power series have a limited radius of convergence. 

‣ The radius is determined by the position of the nearest singularity.
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Taylor vs Logarithmic
‣ When moving along an horizontal line, the Feynman prescription plays an important role
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Analytic continuation
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‣ When moving along an horizontal line, the Feynman prescription plays an important role
1

s − m2
V + iδ
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Automatic packages
‣ This idea was first introduced in the study of Higgs+jet production at 2-loop [F.Moriello, 

arXiv:1907.13234].

‣ The first publicly available Mathematica package implementing this technique is DiffExp 

[M.Hidding, arXiv:2006.05510]. The main limitation of DiffExp is the fact that it can work only with 
real-valued variables. For this reason, it is suitable with QCD calculations, but not for EW ones.


‣ Another Mathematica implementation is in the package SeaSyde [TA, 
R. Bonciani, S. Devoto, N. Rana, A. Vicini, arXiv:2205.03345]. For the 
first time we introduced the algorithm for the analytic continuation in the 
complex plane, thus allowing it to be used in EW calculations. For 
example it has been used for the calculation of NNLO mixed QCD-EW 
corrections to the Drell-Yan process.
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Automatic packages
‣ A third independent implementation is in the Mathematica package AMFlow [X. Liu, Y. Ma, 

arXiv:2201.11669]. In particular, they use the auxiliary mass flow method for automatically 
obtaining the boundary conditions.


‣ In the limit  the integrals simplify and thus they can be easily evaluated analytically. Then we 
can write down the differential equation w.r.t. , and, finally, recover the desired integral by evolving 

 from  to 


‣ All three packages can solve all type of problems, including elliptic ones.

‣ A fourth group is working on a C++ implementation LoopTransport [T. Neumann], however, this is 

not public yet.

η → ∞
η

Iaux ∞ i0−

Iaux(αi; sj, d, η) = ∫
l

∏
k=1

ddqk

iπd/2

1
[𝒟1 − η]α1 … [𝒟n − η]αn

I = lim
η→i0−

Iaux(η)∂
∂η

⃗Iaux = A(η) ⃗Iaux
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Neutral-current Drell-Yan
‣ The first physical application of SeaSyde was for the calculation of the 

mixed QCD-EW corrections for the Neutral-Current Drell-Yan       
[TA, R. Bonciani, S. Devoto, N.Rana, A.Vicini, arXiv:2201.01754]

σ(0,0)

+αS σ(1,0) + α σ(0,1)

+α2
S σ(2,0) + αS α σ(1,1) + α2 σ(0,2) + …

‣ We had 36 Master Integrals with 2 internal 
(complex-)massive lines. For 31 out of 36 we had an 
expression in terms of Generalised PolyLogarithms (GPLs). 
However, for 5 of them we only had an expression in terms of 
Chen-Goncharov integrals, which are not suitable for a 
numerical evaluation.
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Neutral-current Drell-Yan
‣ 31 masters provide cross checks with analytic results, 5 are a prediction;

‣ complex mass scheme smoothens the behaviour at threshold.
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Neutral-current Drell-Yan
‣ The boundary conditions are imposed in the euclidean region, outside of the physical one. 

Transporting the solution to the physical region requires different times depending on the number of 
terms in the series required.

Number of terms Precision Time 
50 terms ~14 min
75 terms ~26 min
100 terms ~50 min
125 terms ~75 min
150 terms ~90 min

10−14

10−19

10−25

10−33

10−40

‣ Given the execution time it is impossible to implement directly in a 
Monte-Carlo generator. For this reason, we created a grid for the final 
correction and then, thanks to its smoothness we can interpolate it. 
The grid consist of 3250 point spanning  and 

.
s ∈ [40 GeV, 13 TeV]

cos θ ∈ [−1,1]
38



‣ Those integrals belong to a two-loop box integral family. In this family we have 56 masters. We 
could proceed in the same way as before, that is find the boundary conditions and then use the 
differential equations w.r.t.  and  to create a grid which covers the entire phase space.


‣ Another possibility is to write down the differential equations w.r.t. one of the two masses and use 
the grid of the neutral current Drell-Yan as a boundary condition.

s t

Charged-current Drell-Yan
‣ This process, even if similar to the previous one, is more complicated 

because now we have integrals with two different internal massive 
lines.

μZ

μZ

μZ

μW
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Conclusion

‣ The method of differential equations, and in particular its semi-analytical approach, is a powerful 
technique for evaluating Feynman integrals. In particular, it is a method easy to automatise and 
completely general. Moreover, we can easily control the numerical precision of the result;


‣ Its main problem right now is the speed, mainly due to the fact that all its implementations are in 
Mathematica. For this reason we have to rely on pre-computed grids which are then interpolated in 
Monte-Carlo generator;


‣ We implemented the method in the publicly available Mathematica package SeaSyde, which can 
handle arbitrary internal complex masses;


‣ The method has been already applied in the calculation of the mixed QCD-EW corrections to the 
Neutral current Drell-Yan and to the charged current case (not yet public).
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