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• Jets are spray of particles or collimated beam of hadrons (mesons 
and baryons) produced in the high energy collisions.

• They are observed in electron positron annihilations to quark-pair.

• This is very much similar to muon-pair creation, but a careful study 
inferred the existence of three colours that the quarks can have.

• The three jet events successfully describe the presence of gauge 
boson mediator responsible for strong interactions, gluons.

• Now they are produced in multitude at the LHC, can be used for 
various signals (e.g. top decays).

• They can also be used for BSM searches (like mono-jet events).

What are jets?
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Hadroproduction of jets

• In hadron collisions, jets are produced in many ways not just in quark 
annihilations. Many parton channels are possible.
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The parton-parton scattering subprocesses contributing to jet production in lowest order
are

qj q̄j → qj q̄j , qj q̄j → qkq̄k , qj q̄k → qj q̄k , qjqj → qjqj , qjqk → qjqk ,

qq̄ → gg , gg → qq̄ , qg → qg , gg → gg . (2.3)

For the process fa(pa) + fb(pb) → J(pJ) +X , the Mandelstam invariants constructed from the
parton and jet four-vectors are given by

s = (pa + pb)
2 , t = (pa − pJ)

2 , u = (pb − pJ)
2 , (2.4)

which satisfy s4 ≡ s + t + u = 0 at threshold. The variable s4 is the square of the invariant
mass of the system recoiling against the observed jet.

The threshold for the above partonic subprocesses occurs at s4 = 0. The values of xa and xb

corresponding to this point are the minimum values which can give rise to a jet of the specified
rapidity and transverse momentum. Near threshold the phase space for the emission of real
gluons is limited and large logarithmic corrections arise from the incomplete cancellation of
infrared divergences against virtual gluon emission contributions. In general, σ̂ includes plus
distributions with respect to s4 at nth order in αs of the type

[

lnm(s4/p2T )

s4

]

+

, m ≤ 2n− 1 , (2.5)

where pT = (tu/s)1/2 is the transverse momentum of the jet. These distributions have been
resummed to all orders at next-to-leading logarithmic (NLL) accuracy for dijet and singlet-jet
production in Refs. [5, 6, 7].

The resummation is achieved in moment space through a refactorization [5, 7, 8, 9] of the
cross section into a product of functions ψ and J that absorb the collinear singularities in the
incoming partons and outgoing jets, respectively; a soft gluon function S that encompasses
noncollinear soft gluon emission; and a hard-scattering function H that describes the short-
distance hard-scattering. The color structure of the hard scattering depends on the flavor
content (for example singlet or octet for qq̄ → qq̄) and is described by a set of color tensors
cI . Note that the functions S and H are actually matrices in color space. At lowest order
SLI = Tr[c†LcI ]. As we shall see, the trace of the product of the matrices H and S at lowest
order gives the Born cross section. Full details of the resummation formalism for jet production
are given in Refs. [5, 6, 7, 10, 11].

The moments of the perturbative partonic cross section are then given by

EJ
d3σ̂fafb→JX(N)

d3pJ
≡

∫ ds4
s

e−Ns4/sEJ
d3σ̂fafb→JX(s4)

d3pJ

=
ψ̃fa/fa(Na) ψ̃fb/fb(Nb)

φ̃fa/fa(Na) φ̃fb/fb(Nb)
J̃(N)J̃r(N)H S̃(pT/(NµF )) . (2.6)

where J represents the final-state observed jet, and Jr the partons recoiling against the jet.
Note that Na = N(−u/s) and Nb = N(−t/s), with N the moment variable. The moments
of the plus distributions, Eq. (2.5), in the cross section produce powers of lnN as high as
ln2n N . The leading and next-to-leading logarithms of N are then resummed to all orders in
perturbation theory.
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Jet calculations : Colour projection technique

• Consider a 2 —> 2 scattering process (four parton scattering).

• The basic idea: The matrix element in the colour space can be 
thought of as a vector in the colour space spanned by some colour 
basis elements.

• To resolve the respective components, one can simply project 
these basis elements on to the given matrix element for a given 
four parton scattering.

• The number of basis elements changes with the parton scattering 
under consideration.

• Then these colour projected amplitudes can then be represented 
in the matrix form.
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Quark quark scattering

- p. 8/33

Color basis, Soft function, Hard function ....

1. The t-channel color basis for a process i j → k l is given by

c1 = δik δjl, c2 = T c
ki T c

jl

2. The soft function for this basis is

SIJ = |CI >< CJ |, with |CI >= {c1, c2}

3. IfM denotes the QCD amplitude for a given subprocess, then the color decomposed matrix
elements HI are obtained from

|HI >= M|PI > and < HI | =< PI |M
∗

where |PI >= {p1, p2} such that pi = ci/Sii

4. The hard function for that given subprocess is then given as

HIJ = |HI >< HJ |

5. The squared matrix elements at Born level are then simply obtained from

|M |2 = SIJHJI = Tr[S.H]

and the trace is taken in color space.
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Orthogonal basis

Orthonormal basis

Soft matrix

- p. 8/33

Color basis, Soft function, Hard function ....

1. The t-channel color basis for a process i j → k l is given by

c1 = δik δjl, c2 = T c
ki T c

jl

2. The soft function for this basis is

SIJ = |CI >< CJ |, with |CI >= {c1, c2}

3. IfM denotes the QCD amplitude for a given subprocess, then the color decomposed matrix
elements HI are obtained from

|HI >= M|PI > and < HI | =< PI |M
∗

where |PI >= {p1, p2} such that pi = ci/Sii

4. The hard function for that given subprocess is then given as

HIJ = |HI >< HJ |

5. The squared matrix elements at Born level are then simply obtained from

|M |2 = SIJHJI = Tr[S.H]

and the trace is taken in color space.

Colour projection / 
Colour decomposition

- p. 8/33

Color basis, Soft function, Hard function ....

1. The t-channel color basis for a process i j → k l is given by

c1 = δik δjl, c2 = T c
ki T c

jl

2. The soft function for this basis is

SIJ = |CI >< CJ |, with |CI >= {c1, c2}

3. IfM denotes the QCD amplitude for a given subprocess, then the color decomposed matrix
elements HI are obtained from
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5. The squared matrix elements at Born level are then simply obtained from

|M |2 = SIJHJI = Tr[S.H]

and the trace is taken in color space.

Consider a four quark scattering process, represented by their colours:
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Soft and hard functions
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Hard matrix

Born level
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when a scale µ = Mdijet/2 was used. This is consistent with our findings, although the details
of the corrections and some of the techniques used differ in the two cases.

4 Conclusion

In this paper the corrections to existing NLO calculations from threshold resummation in jet
production in hadron-hadron collisions have been studied using the formalism of Refs. [5, 6, 7].
Detailed expressions for the NNLO corections to NLL accuracy have been presented for each of
the parton-parton scattering processes. It is found that adding the NNLO corrections to NLO
predictions results in a decrease in the scale dependence and that the corrections are rather small
if the renormalization and factorization scales are chosen to ET/2. The NNLO corrections are
smallest for quark-quark subprocesses and increase in size for the quark-gluon and gluon-gluon
subprocesses. However, the more rapid decrease with increasing ET for the latter subprocesses
results in a relatively flat behavior for the NNLO corrections as ET increases. It therefore
appears that threshold resummation is not sufficient to remove the remaining discrepancies
between the data and the predictions of QCD for high ET jet production.
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A NNLO-NLL corrections for quark-antiquark annihila-

tion processes

We begin with the quark-antiquark annihilation processes,

q (pa, ra) + q̄ (pb, rb) → q (p1, r1) + q̄ (p2, r2) , (A.1)

where the pi and ri are momentum and color labels, respectively. We use the notation

T ≡ ln
(−t

s

)

+ πi , U ≡ ln
(−u

s

)

+ πi , (A.2)

where
s = (pa + pb)

2 , t = (pa − p1)
2 , u = (pb − p1)

2 , (A.3)

are the usual Mandelstam invariants. In the t-channel singlet-octet color basis

cqq̄→qq̄
1 = δrar1δrbr2 , cqq̄→qq̄

2 = (T c
F )r1ra(T

c
F )rbr2 , (A.4)

where the T c
F are the generators of SU(3) in the fundamental representation, the soft matrix

S at lowest order, with elements SLI = Tr[c†LcI ], is given by

Sqq̄→qq̄ =





N2
c 0

0 (N2
c − 1)/4



 , (A.5)
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and the one-loop soft anomalous dimension matrix ΓS′ is [6, 9, 25]

Γqq̄→qq̄
S′ =

αs

π





2CFT −CF

Nc
U

−2U − 1
Nc
(T − 2U)



 . (A.6)

There are three different quark-antiquark subprocesses to consider depending on the quark
flavors.

A.1 NNLO corrections for qj q̄j → qj q̄j

The hard matrix for the process qj q̄j → qj q̄j at lowest order, whose elements come from the
squares of the color-decomposed tree amplitudes, is given by (see also Ref. [17])

Hqj q̄j→qj q̄j = α2
s





H
qj q̄j→qj q̄j
11 H

qj q̄j→qj q̄j
12

H
qj q̄j→qj q̄j
12 H

qj q̄j→qj q̄j
22



 , (A.7)

with

H
qj q̄j→qj q̄j
11 =

2C2
F

N4
c

(t2 + u2)

s2
,

H
qj q̄j→qj q̄j
12 =

2CF

N3
c

[

−
(t2 + u2)

Ncs2
+

u2

st

]

,

H
qj q̄j→qj q̄j
22 =

1

N2
c

[

2

N2
c

(t2 + u2)

s2
+ 2

(s2 + u2)

t2
−

4

Nc

u2

st

]

. (A.8)

The Born cross section is given, using Eq. (2.9), by

EJ

d3σ̂B
qj q̄j→qj q̄j

d3pJ
≡ σB

qj q̄j→qj q̄jδ(s4) = α2
s

(N2
c − 1)

2N2
c s

[

t2 + u2

s2
+

s2 + u2

t2
−

2

Nc

u2

st

]

δ(s4) . (A.9)

The NLO threshold corrections from the one-loop expansion of the resummed cross section
at NLL accuracy are then

EJ
d3σ̂(1)

qj q̄j→qj q̄j

d3pJ
=

αs

π
σB
qj q̄j→qj q̄j

{

2CF

[

ln(s4/p2T )

s4

]

+

+

[

−2CF ln

(

µ2
F

p2T

)

−
3

2
CF −

(N2
c + 1)

Nc
ln
(−t

s

)

−
(N2

c − 5)

Nc
ln
(−u

s

)

]

[

1

s4

]

+

}

+
α3
s

π

{

4C2
F

Nc
ln
(−t

s

)

(t2 + u2)

s2
−

8C2
F

N2
c

ln
(−u

s

)

u2

st

}

[

1

s4

]

+

+
αs

π
σB
qj q̄j→qj q̄jδ(s4)

{

−CF

[

ln

(

p2T
s

)

+
3

2

]

ln

(

µ2
F

p2T

)

+
β0
2
ln

(

µ2
R

p2T

)}

. (A.10)

From the two-loop expansion of the resummed cross section at NLL accuracy, we obtain the
following NNLO threshold corrections

EJ

d3σ̂(2)
qj q̄j→qj q̄j

d3pJ
=

(

αs

π

)2

σB
qj q̄j→qj q̄j

{

2C2
F

[

ln3(s4/p2T )

s4

]

+
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From the two-loop expansion of the resummed cross section at NLL accuracy, we obtain the
following NNLO threshold corrections
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There are three different quark-antiquark subprocesses to consider depending on the quark
flavors.
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Soft matrix

M.C. KumarJet cross sections 

Soft function for gg → gg subprocess

The soft function for this basis is given by
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2

6

6

6

6

6

6

6

6

4

1 0 0 0 0
0 8 0 0 0
0 0 8 0 0
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Different quark flavours

M.C. KumarJet cross sections 
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The NNLO corrections are

EJ
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The parton-parton scattering subprocesses contributing to jet production in lowest order
are

qj q̄j → qj q̄j , qj q̄j → qkq̄k , qj q̄k → qj q̄k , qjqj → qjqj , qjqk → qjqk ,

qq̄ → gg , gg → qq̄ , qg → qg , gg → gg . (2.3)
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For qg —> qg channel

M.C. KumarJet cross sections 

Color basis for different parton channels
1 The t-channel color basis for a qq → qq process i j → k l is given by

c1 = δik δjl , c2 = Tc
ki T

c
jl

The soft function for this basis is given by
»

N2
c 0
0 (N2

c − 1)/4

–

2 The t-channel color basis for a qg → qg process i j → k l is given by

c1 = δik δjl , c2 = djlcT c
ki c3 = i f jlc T c

ki

The soft function for this basis is given by
2

4

Nc(N2
c − 1) 0 0
0 (N2

c − 4)(N2
c − 1)/(2Nc) 0

0 0 Nc(N2
c − 1)/2

3

5

3 For the processes that are related to the above by charge conjugation, the basis
needs to be defined accordingly.

4 i , j , k , l = 1, 3 for quarks and i , j , k , l = 1, 8 for gluons.

M.C. Kumar QCD corrections for jet production at LHC
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D NNLO-NLL corrections for qg → qg

Here we discuss quark-gluon scattering,

q (pa, ra) + g (pb, rb) → q (p1, r1) + g (p2, r2) . (D.1)

In the t-channel color basis

cqg→qg
1 = δrar1δrbr2 , cqg→qg

2 = drbr2c(T c
F )r1ra , cqg→qg

3 = if rbr2c(T c
F )r1ra , (D.2)

the soft matrix at lowest order is

Sqg→qg =











Nc(N2
c − 1) 0 0

0 (N2
c − 4)(N2

c − 1)/(2Nc) 0

0 0 Nc(N2
c − 1)/2











, (D.3)

and the one-loop soft anomalous dimension matrix is [6]

Γqg→qg
S′ =

αs

π











(CF + CA) T 0 U

0 CFT + CA

2 U CA

2 U

2U N2
c−4
2Nc

U CFT + CA

2 U











. (D.4)

The hard matrix at lowest order is given by (see also Ref. [17])

Hqg→qg = α2
s











Hqg→qg
11 Hqg→qg

12 Hqg→qg
13

Hqg→qg
12 Hqg→qg

22 Hqg→qg
23

Hqg→qg
13 Hqg→qg

23 Hqg→qg
33











, (D.5)

with

Hqg→qg
11 = −

1

2N3
c (N

2
c − 1)

(

t2

su
− 2

)

,

Hqg→qg
12 = NcH

qg→qg
11 ,

Hqg→qg
22 = N2

cH
qg→qg
11 ,

Hqg→qg
13 =

1

N2
c (N

2
c − 1)

[

−1 −
2s

t
+

u

2s
−

s

2u

]

,

Hqg→qg
23 = NcH

qg→qg
13 ,

Hqg→qg
33 =

1

Nc(N2
c − 1)

[

3−
4su

t2
−

t2

2su

]

. (D.6)

The Born cross section is

EJ

d3σ̂B
qg→qg

d3pJ
≡ σB

qg→qgδ(s4) = α2
s

1

s

[

2−
1

N2
c

−
(N2

c − 1)

2N2
c

t2

su
− 2

su

t2

]

δ(s4) . (D.7)
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For gg—> gg channel

M.C. KumarJet cross sections 

Color basis for different parton channels contd...

The t-channel color basis for a gg → gg process i j → k l is given
by

c1 =
i
4
[f ijmdklm − dijmf klm] δik δjl ,

c2 =
i
4
[f ijmdklm + dijmf klm],

c3 =
i
4
[f ikmdjlm + dikmf jlm],

c4 =
1
8

δikδjl ,

c5 =
3
5
dikn djln,

c6 =
1
3
f ikn f jln,

c7 =
1
2
`

δijδkl − δilδjk
´

−
1
3
f ikn f jln ,

c8 =
1
2
`

δijδkl + δilδjk
´

−
1
8

δikδjl −
3
5
dikn djln

M.C. Kumar QCD corrections for jet production at LHC
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For gg—> gg channel

M.C. KumarJet cross sections 

Soft function for gg → gg subprocess

The soft function for this basis is given by

S8×8 =

2

4

G3×3 03×5

05×3 G5×5

3

5

where G3×3 =

2

6

6

4

5 0 0
0 5 0
0 0 5

3

7

7

5

and G5×5 =

2

6

6

6

6

6

6

6

6

4

1 0 0 0 0
0 8 0 0 0
0 0 8 0 0
0 0 0 20 0
0 0 0 0 27

3

7

7

7

7

7

7

7

7

5

N. Kidonakis, G. Oderda and G. Sterman
Nucl. Phys. B. 531 (1998)
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For gg—> gg channel

M.C. KumarJet cross sections 

22

The hard matrix at lowest order is [17]

Hgg→gg = α2
s





03×3 03×5

05×3 Hgg→gg
5×5



 , (E.8)

where

Hgg→gg
5×5 =

























Hgg→gg
11 Hgg→gg

12 Hgg→gg
13 0 Hgg→gg

15

Hgg→gg
12 Hgg→gg

22 Hgg→gg
23 0 Hgg→gg

25

Hgg→gg
13 Hgg→gg

23 Hgg→gg
33 0 Hgg→gg

35

0 0 0 0 0

Hgg→gg
15 Hgg→gg

25 Hgg→gg
35 0 Hgg→gg

55

























, (E.9)

with

Hgg→gg
11 =

9

16

(

1−
tu

s2
−

st

u2
+

t2

su

)

,

Hgg→gg
12 =

1

2
Hgg→gg

11 ,

Hgg→gg
13 =

9

32

(

st

u2
−

tu

s2
+

u2

st
−

s2

tu

)

,

Hgg→gg
15 = −

1

3
Hgg→gg

11 , Hgg→gg
22 =

1

4
Hgg→gg

11 ,

Hgg→gg
23 =

1

2
Hgg→gg

13 , Hgg→gg
25 = −

1

6
Hgg→gg

11 ,

Hgg→gg
33 =

27

64
−

9

16

(

su

t2
+

tu

4s2
+

st

4u2

)

+
9

32

(

u2

st
+

s2

tu
−

t2

2su

)

,

Hgg→gg
35 = −

1

3
Hgg→gg

13 , Hgg→gg
55 =

1

9
Hgg→gg

11 . (E.10)

The Born cross section is

EJ

d3σ̂B
gg→gg

d3pJ
≡ σB

gg→ggδ(s4) = α2
s

1

s

[

27

2
−

9

2

(

su

t2
+

tu

s2
+

st

u2

)]

δ(s4) . (E.11)

The NLO corrections are

EJ

d3σ̂(1)
gg→gg

d3pJ
=

αs

π
σB
gg→gg

{

2CA

[

ln(s4/p2T )

s4

]

+

+

[

−2CA ln

(

µ2
F

p2T

)

− 2CA ln

(

p2T
s

)

−
β0
2

]

[

1

s4

]

+

}

+
α3
s

π

{

27

8

[

2 ln
(−t

s

)

+ 5 ln
(−u
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What about higher orders?

M.C. KumarJet cross sections 

Parton level cross section
1 The parton level resummed cross section for a generic subprocess is given by

d σ̂12 → 34 = exp
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Threshold corrections as the first attempt

Thanks to the Factorisation theorem

Soft anomalous dimension Γs

1 The Wilson lines are the parth ordered exponentials of the fields propagating
from point λ1 to λ2.

2 The wilson lines for a color singlet product satisfies the RG group equation

µ
d
dµ

W = ΓW

0

B

@
αs ,

βi .βj
q

β21β
2
2

1

C

A
W

where ΓW is the anomalous dimension.

3 The Wilson lines for a four parton scattering process, involves a soft matrix, in
much the same manner as the Hard function does.

4 The corresponding anomalous dimension then would be a matrix in color space

µ
d
dµ

SI = (ΓS)JI

 

αs ,
βi .βj |n|2

|βi .n||βj .n

!

SJ

M.C. Kumar QCD corrections for jet production at LHC

Soft anomalous dimension
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Initial and final state jet functions

M.C. KumarJet cross sections 

Jet functions

1 Jet functions have the information about collinear configurations.

2 The initial state functions J I
a are given by

J I
a = −2
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µ
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−
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#

3 The final state functions J F
a are given by
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a =
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0
dz
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Z (1−z)

(1−z)2
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λ
A(fa)[αs(λ(p2T ))]

+ B(1)
a [αs((1 − z)p2T )] + B(2)

a [αs((1− z)2p2T )]

#
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Different subprocesses

M.C. KumarJet cross sections 

Various subprocesses

q(p1) + q′(p2) → q(p3) + q′(p4) ,

q(p1) + q̄(p2) → q′(p3) + q̄′(p4) ,

q(p1) + q̄(p2) → q(p3) + q̄(p4) ,

q(p1) + q(p2) → q(p3) + q(p4) ,

q(p1) + q̄′(p2) → q(p3) + q̄′(p4) ,

q(p1) + q̄(p2) → g(p3) + g(p4) ,

q(p1) + g(p2) → q(p3) + g(p4) ,

g(p1) + g(p2) → q(p3) + q̄(p4) ,

g(p1) + g(p2) → g(p3) + g(p4) .

M.C. Kumar QCD corrections for jet production at LHC
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Threshold corrections

M.C. KumarJet cross sections 

Expansion of the resummed result to NLL

1 At parton level, the resummed result can be expanded to 1-loop at NLL accuracy
as

s2 d
2σ̂

dtdu
=

αs
π

σ(0)
(

c3

"

ln(s4/p2T
s4

)

#

+

+ c2
» 1
s4

–

+

+ c1δ(s4)
)

2 The resummed result expanded to 2-loop level at NLL accuracy is:

s2 d
2σ̂

dtdu
=
“αs

π

”2
σ(0)

(

b3

"

ln3(s4/p2T )

s4

#

+

+ b2

"

ln2(s4/p2T )

s4

#

+

+ b1

"

ln(s4/p2T )

s4

#

+

)

3 The coefficients of c3 and b3 are leading logarithms (LL)
4 The coefficients of c2 and b2 are next-to-leading logarithms (NLL)
5 To determin the coefficients c1 and b1, we need the hard matching functions

H(1).
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M.C. Kumar QCD corrections for jet production at LHC

• These threshold corrections estimate the size of the logarithmic 
corrections at higher orders.

• The regular terms are not captured in these corrections and explicit 
computation of the full FO results are required for this.
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Fixed order corrections

M.C. KumarJet cross sections 

• We have two broad class methods to compute the NLO FO corrections.

• Phase space slicing : The soft and collinear singular regions are sliced 
using small cut-off parameters. The calculation is carried out analytically 
in these regions in  dimensions.

• Subtraction methods : Dipole subtraction terms are added to the real 
matrix elements to cancel the singularities point-by-point in the phase 
space.

• The IR singularities cancel between the real and virtual corrections.

• The remaining finite contributions can be integrated out numerically 
using standard phase space generators.

d = 4 − 2ϵ
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Jet algorithms

M.C. KumarJet cross sections 

• Partons in the final stage do fragment into hadrons and hence can not be 
detected as they are.

• Jet algorithm is precisely a way of defining the observable that is 
consistent with the experimental measurements (that involve the cone 

size defined as)

• Infra-red safety has to be ensured while implementing the jet algorithm.

• Different jet algorithms

• Cone Algorithms

• Sequential Recombination methods (kT-class of algorithms)

ΔR = (η2 − η1)2 + (ϕ2 − ϕ1)2
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Sequential Recombination methods

M.C. KumarJet cross sections 

•

•

• Find the minimum  of all 

• If  is a , then merge the particles  into a single jet by 
summing their four-momenta (E-scheme recombination).

• If  is a , then declare it as a final jet and remove it from the list.

5 FastJet native jet algorithms

5.1 kt jet algorithm

The definition of the inclusive kt jet algorithm that is coded is as follows (and corresponds to [3],
modulo small changes of notation):

1. For each pair of particles i, j work out the kt distance

dij = min(k2
ti, k

2
tj) ∆R2

ij/R
2 (1)

with ∆R2
ij = (yi − yj)2 + (φi − φj)2, where kti, yi and φi are the transverse momentum, rapidity

and azimuth of particle i and R is a jet-radius parameter usually taken of order 1; for each
parton i also work out the beam distance diB = k2

ti.

2. Find the minimum dmin of all the dij, diB. If dmin is a dij merge particles i and j into a single
particle, summing their four-momenta (this is E-scheme recombination); if it is a diB then
declare particle i to be a final jet and remove it from the list.

3. Repeat from step 1 until no particles are left.

The exclusive longitudinally invariant kt jet algorithm [2] is similar except that (a) when a diB is the
smallest value, that particle is considered to become part of the beam jet (i.e. is discarded) and (b)
clustering is stopped when all dij and diB are above some dcut. In the exclusive mode R is commonly
set to 1.

5.2 Cambridge/Aachen jet algorithm

Currently the Cambridge/Aachen jet algorithm is provided only in an inclusive version [5], whose
formulation is identical to that of the kt jet algorithm, except as regards the distance measures, which
are:

dij = ∆R2
ij/R

2 , (2a)

diB = 1 . (2b)

Attempting to extract exclusive jets from the Cambridge/Aachen with a dcut parameter simply pro-
vides the set of jets obtained up to the point where all dij , diB > dcut. Having clustered with some
given R, this can actually be an effective way of viewing the event at a smaller radius, Reff =

√
dcutR,

thus allowing a single event to be viewed at a continuous range of Reff within a single clustering.

We note that the true exclusive formulation of the Cambridge algorithm [4] instead makes use an
auxiliary (kt) distance measure and ‘freezes’ pseudojets whose recombination would involve too large
a value of the auxiliary distance measure.

5.3 Anti-kt jet algorithm

This new algorithm, introduced and studied in [6], is defined exactly like the standard kt algorithm,
except for the distance measures which are now given by

dij = min(1/k2
ti, 1/k

2
tj) ∆R2

ij/R
2 , (3a)

diB = 1/k2
ti . (3b)
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While being a sequential recombination algorithm like kt and Cambridge/Aachen, the anti-kt algorithm
behaves in some sense like a ‘perfect’ cone algorithm, in that its hard jets are exactly circular on the
y-φ cylinder [6].

5.4 Generalised kt jet algorithm

The “generalised kt” algorithm again follows the same procedure, but depends on an additional
continuous parameter p, with has the following distance measure:

dij = min(k2p
ti , k2p

tj ) ∆R2
ij/R

2 , (4a)

diB = k2p
ti . (4b)

For specific values of p, it reduces to one or other of the algorithms list above, kt (p = 1), Cam-
bridge/Aachen (p = 0) and anti-kt (p = −1).

5.5 Generalised kt algorithm for e+e− collisions

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specif-
ically for e+e− collisions) along the lines of the original kt algorithms [9], but extended in analogy
with the generalised pp algorithm of [6] and section 5.4. We define the two following distances:

dij = min(E2p
i , E2p

j )
(1 − cos θij)

(1 − cos R)
, (5a)

diB = E2p
i , (5b)

for a general value of p and R. At a given stage of the clustering sequence, if a dij is smallest then i
and j are recombined, while if a diB is smallest then i is called an “inclusive jet”.

For values of R ≤ π in eq. (5), the generalised e+e− kt algorithm behaves in analogy with the pp
algorithms: when an object is at an angle θiX > R from all other objects X then it forms an inclusive
jet. With the choice p = −1 this provides a simple, infrared and collinear safe way of obtaining a
cone-like algorithm for e+e− collisions, since hard well-separated jets have a circular profile on the 3D
sphere, with opening half-angle R.

If one imagines a (complex) value of R such that (1−cosR) > 2, then the diB will be smallest only
if the event consists of a single particle, and thus with the additional choice of p = 1 the clustering
sequence will correspond to that of the e+e− kt algorithm [9], often referred to also as the Durham
algorithm, which has a single distance:

dij = 2 min(E2p
i , E2p

j )(1 − cos θij) . (6)

Note the difference in normalisation between the dij in eqs. (5) and (6), and the fact in neither case
have we normalised to the total energy Q in the event, contrary to the convention adopted originally
in [9] (where the distance measure was called yij).

5.6 Recombination schemes

When merging particles in step 2 of the clustering procedure, one must specify how to combine the
momenta. The simplest procedure (E-scheme) simply adds the four-vectors. This has been advocated
as a standard in [8], and is the default option in FastJet.
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dmin dij and diB

dmin dij i and j

dmin diB

FastJet package : For implementing the jet algorithm 
M. Cacciari, G. P. Salam and G. Soyez (2011)
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Measurement of azimuthal correlations among jets and
determination of the strong coupling in pp collisions atp

s = 13 TeV

The CMS Collaboration

Abstract

A measurement is presented of the ratio observable RDf(pT) that provides a mea-
sure of the azimuthal correlations among jets with large transverse momentum pT.
The RDf(pT) variable is defined as the ratio of the number of neighbouring jets in
events with a 3-jet topology, enforced through an azimuthal angular separation of
2p/3 < Df < 7p/8, over the number of inclusive jets within the same jet pT
bin. The RDf(pT) variable is measured over the pT ⇡ 360�3200 GeV range based
on data collected by the CMS experiment in proton-proton collisions at a centre-
of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb�1.
The results are compared to predictions from Monte Carlo event generator simu-
lations that include parton showers, hadronisation, and multiparton interactions.
Fixed-order predictions of perturbative quantum chromodynamics (pQCD) at next-
to-leading-order (NLO) accuracy obtained with the NNPDF3.1 NLO parton densi-
ties, corrected for nonperturbative and electroweak effects, are also compared to the
measurement. Within uncertainties, data and theory are in agreement. From this
comparison, the strong coupling constant at the Z boson mass scale is determined to
be aS(MZ) = 0.1177 ± 0.0013 (exp)+0.0116

�0.0073 (th) = 0.1177+0.0117
�0.0074, where the total uncer-

tainty is dominated by the scale dependence of the fixed-order predictions. A test of
the running of aS(Q) in the TeV region shows no deviation from the expected pQCD
behaviour.

c� 2023 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
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2

can equivalently be defined as:

RDf(pT) =
Â•

n=0 nN(pT, n)

Â•
n=0 N(pT, n)

, (2)

which allows a multidimensional unfolding of the more general quantity N(pT, n) to be per-
formed instead of a separate unfolding of the numerator and denominator of Eq. (1).

The measurement is performed using data collected with the CMS detector, during the LHC
Run 2 data-taking period (2016–2018), corresponding to an integrated luminosity of 134 fb�1

at a centre-of-mass energy of 13 TeV [7–9]. Previous determinations of the strong coupling
constant using jets at hadron colliders have been reported by the CDF [10] and D0 [11, 12] Col-
laborations in pp collisions at

p
s = 1.96 TeV at the Fermilab Tevatron. At the CERN LHC,

determinations have been reported using jet data in pp collisions by the ATLAS and CMS
Collaborations at

p
s = 7 TeV [13–17], 8 TeV [18–21], and 13 TeV [22–25]. An additional deter-

mination, using jet data from pp collisions at
p

s = 7 TeV from the ATLAS experiment, has
been reported in Ref. [26].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors.
Muons are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside
the solenoid.

The electromagnetic calorimeter consists of 75 848 lead tungstate crystals, which provide cov-
erage in pseudorapidity |h| < 1.48 in a barrel region (EB) and 1.48 < |h| < 3.0 in two endcap
regions (EE). Preshower detectors consisting of two planes of silicon sensors interleaved with
a total of 3X0 of lead are located in front of each EE detector.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted
or late-converting photons in the tens of GeV energy range. The energy resolution of the re-
maining barrel photons is about 1.3% up to |h| = 1, changing to about 2.5% at |h| = 1.4. In the
endcaps, the energy resolution is about 2.5% for unconverted or late-converting photons, and
between 3 and 4% for the other ones [27].

In the region |h| < 1.74, the HCAL cells have widths of 0.087 in pseudorapidity and 0.087
in azimuth (f). In the h-f plane, and for |h| < 1.48, the HCAL cells map on to 5⇥5 arrays
of ECAL crystals to form calorimeter towers projecting radially outwards from close to the
nominal interaction point. For |h| > 1.74, the coverage of the towers increases progressively to
a maximum of 0.174 in Dh and Df. Within each tower, the energy deposits in ECAL and HCAL
cells are summed to define the calorimeter tower energies, which are subsequently used to
provide the energies and directions of hadronic jets. A more detailed description of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [28].

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
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FIG. 1: Ratio of theory predictions to data for 0.0 < |y⇤| < 0.5 (left) and 1.5 < |y⇤| < 2.0 (right) for the scale choices µ = mjj

(top) and µ = hpT i (bottom) at LO (green), NLO (blue) and NNLO (red). Scale bands represent variation of the cross section
by varying the scales independently by factors of 2 and 0.5.

was done for dijet studies at the DØ experiment [20], or
the triply di↵erential distribution in pT1 , y1 and y2 (or
alternatively, average jet pT , |y⇤| and |ȳ|) [21, 22], which
would provide more specific information on the x-values
probed.

The data sample we compare to is the ATLAS 7 TeV
4.5 fb�1 2011 data [19]. This constitutes the recording
of all events with at least two jets reconstructed in the
rapidity range |y| < 3.0 using the anti-kt algorithm with
R=0.4 such that the leading and subleading jets satisfy
a minimum pT cut of 100 GeV and 50 GeV respectively.

As detailed in [15], we include the leading colour
NNLO corrections in all partonic sub-processes. The cal-
culation is performed in the NNLOJET framework, which
employs the antenna subtraction method [24, 25] to re-
move all unphysical infrared singularities from the matrix
elements [26–28]. We use the MMHT2014 NNLO parton
distribution functions [30] with ↵s(MZ) = 0.118 for all
predictions at LO, NLO and NNLO to emphasize the role
of the perturbative corrections at each successive order.

At any given fixed order in perturbation theory, the
predictions retain some dependence on the unphysical
renormalization and factorization scales. The natural
physical scale for dijet production is the dijet invariant
mass, µ = mjj , which has not been widely used in di-
jet studies to date. Another scale, which was used at
DØ [20] and is currently used by CMS [18] is the average
pT of the two leading jets, µ = hpT i = 1

2 (pT1 + pT2).

In Fig. 1 we show the predictions at LO, NLO and
NNLO for these two scale choices at small and large |y⇤|.
For small |y⇤|, both scale choices provide reasonable pre-
dictions with largely overlapping scale bands, reduced
scale variation at each perturbative order, convergence of
the perturbative series and good description of the data.
For the larger |y⇤| bin we see significant di↵erences in the
behaviour of the predictions for the two scales. For the
µ = mjj scale choice, the behaviour is qualitatively sim-
ilar to what is seen at small |y⇤|; in contrast, the NLO
prediction with µ = hpT i falls well away from the LO

prediction and is even outside the LO scale band. For
this scale choice, the NLO contribution induces a large
negative correction, which brings the central value in line
with the data but with a residual scale uncertainty of up
to 100%. Indeed for |y⇤| >2.0 the scale band for µ = hpT i
widens further and even includes negative values of the
cross section. These issues are resolved by the inclusion of
the NNLO contribution such that the NNLO prediction
is positive across the entire phase space and provides a
good description of the data. With the issue of unphysi-
cal predictions resolved, we are free to make a scale choice
based upon more refined qualities such as perturbative
convergence and residual scale variation. On this basis
we choose the theoretical scale µ = mjj and present de-
tailed results using this scale choice throughout the rest
of this letter.

In Fig. 2 we present the absolute cross section as a
function of mjj for each |y⇤| bin, compared to NNLO-
accurate theory. We observe excellent agreement with
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FIG. 1: Double-di↵erential inclusive jet cross-sections mea-
surement by ATLAS [6] and NNLO perturbative QCD pre-
dictions as a function of the jet pT in slices of rapidity, for
anti-kT jets with R = 0.4 normalized to the NLO result. The
shaded bands represent the scale uncertainty of the theory
predictions obtained by varying µR and µF as described in
the text. The red dashed line displays the NNLO/NLO ratio
corrected multiplicatively for electroweak corrections [37].

Nc, to all these subprocesses. In practice this amounts
to calculating the N2

c , NcNF and N2
F corrections to all

LO subprocesses, where NF is the number of light quark
flavours. We include the full LO and NLO coe�cients in
this calculation but note that retaining only the leading
colour correction to all partonic subprocesses at NLO
gives the full result to within a few percent across all
distributions. The analogous subleading colour contri-
butions at NNLO are expected to be small and we do
not include them in this study. To support this assump-
tion we note that the subleading colour NNLO contribu-
tion for pure gluon scattering was presented in a previ-
ous study [34] and found to be negligible. We construct
subtraction terms to regulate all IR divergences in the
phase space integrals and cancel all explicit poles in the
dimensional regularization parameter, ✏ = (4� d)/2, the
details of which for the antenna subtraction method can
be found in [25, 34, 36]. The IR finite cross section at
NNLO is then integrated numerically in four dimensions
over the appropriate two-, three- or four-parton massless
phase space to yield the final result.

In Fig. 1 we present the results for the double-
di↵erential inclusive jet cross section at NLO and NNLO,
normalized to the NLO theoretical prediction to empha-
size the impact of the NNLO correction to the NLO re-
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FIG. 2: NLO and NNLO k-factors for jet production atp
s = 7 TeV. The lines correspond to the double di↵erential

k-factors (ratios of perturbative predictions in the perturba-
tive expansion) for pT > 100 GeV and across six rapidity |y|
slices.

sult. The collider setup is proton-proton collisions at a
centre of mass energy of

p
s = 7 TeV where the jets are

reconstructed using the anti-kT jet algorithm [35] with
R = 0.4. We use the NNPDF3.0 NNLO PDF set [15]
with ↵s(M2

Z) = 0.118 throughout this paper for LO,
NLO and NNLO predictions to emphasise the behaviour
of the higher order coe�cient functions at each pertur-
bative order. By default we set the renormalization and
factorization scales µR = µF = pT1, where pT1 is the
pT of the leading jet in each event. To obtain the scale
uncertainty of the theory prediction we vary both scales
independently by a factor of 1/2 and 2 with the constraint
1/2  µR/µF  2. We find that the NNLO coe�cient
has a moderate positive e↵ect on the cross section, 10%
at low pT across all rapidity slices relative to NLO. This is
significant because it is precisely in this region where the
majority of the cross section lies, especially in the cen-
tral rapidity slices, and it is where we observe the largest
NNLO e↵ects. At higher pT we see that the relative size
of the NNLO correction to NLO decreases to the 1-2%
level and so the perturbative series converges rapidly.

Given that we see a moderate NNLO correction to the
NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available
data. The data points in Fig. 1 represent the ATLAS
data for an integrated luminosity of 4.5 fb�1 [6], nor-
malized to the NLO prediction. We do not include non-

E.W.N. Glover et. al. 
(2017)
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FIG. 1: Double-di↵erential inclusive jet cross-sections mea-
surement by ATLAS [6] and NNLO perturbative QCD pre-
dictions as a function of the jet pT in slices of rapidity, for
anti-kT jets with R = 0.4 normalized to the NLO result. The
shaded bands represent the scale uncertainty of the theory
predictions obtained by varying µR and µF as described in
the text. The red dashed line displays the NNLO/NLO ratio
corrected multiplicatively for electroweak corrections [37].

Nc, to all these subprocesses. In practice this amounts
to calculating the N2

c , NcNF and N2
F corrections to all

LO subprocesses, where NF is the number of light quark
flavours. We include the full LO and NLO coe�cients in
this calculation but note that retaining only the leading
colour correction to all partonic subprocesses at NLO
gives the full result to within a few percent across all
distributions. The analogous subleading colour contri-
butions at NNLO are expected to be small and we do
not include them in this study. To support this assump-
tion we note that the subleading colour NNLO contribu-
tion for pure gluon scattering was presented in a previ-
ous study [34] and found to be negligible. We construct
subtraction terms to regulate all IR divergences in the
phase space integrals and cancel all explicit poles in the
dimensional regularization parameter, ✏ = (4� d)/2, the
details of which for the antenna subtraction method can
be found in [25, 34, 36]. The IR finite cross section at
NNLO is then integrated numerically in four dimensions
over the appropriate two-, three- or four-parton massless
phase space to yield the final result.

In Fig. 1 we present the results for the double-
di↵erential inclusive jet cross section at NLO and NNLO,
normalized to the NLO theoretical prediction to empha-
size the impact of the NNLO correction to the NLO re-
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s = 7 TeV where the jets are

reconstructed using the anti-kT jet algorithm [35] with
R = 0.4. We use the NNPDF3.0 NNLO PDF set [15]
with ↵s(M2

Z) = 0.118 throughout this paper for LO,
NLO and NNLO predictions to emphasise the behaviour
of the higher order coe�cient functions at each pertur-
bative order. By default we set the renormalization and
factorization scales µR = µF = pT1, where pT1 is the
pT of the leading jet in each event. To obtain the scale
uncertainty of the theory prediction we vary both scales
independently by a factor of 1/2 and 2 with the constraint
1/2  µR/µF  2. We find that the NNLO coe�cient
has a moderate positive e↵ect on the cross section, 10%
at low pT across all rapidity slices relative to NLO. This is
significant because it is precisely in this region where the
majority of the cross section lies, especially in the cen-
tral rapidity slices, and it is where we observe the largest
NNLO e↵ects. At higher pT we see that the relative size
of the NNLO correction to NLO decreases to the 1-2%
level and so the perturbative series converges rapidly.

Given that we see a moderate NNLO correction to the
NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available
data. The data points in Fig. 1 represent the ATLAS
data for an integrated luminosity of 4.5 fb�1 [6], nor-
malized to the NLO prediction. We do not include non-
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FIG. 3: NLO/LO (blue), NNLO/NLO (red) and NNLO/LO
(purple) K-factors double di↵erential in mjj and |y⇤|. Bands
represent the scale variation of the numerator. NNLO PDFs
are used for all predictions.

the data across the entire kinematic range in mjj and
|y⇤|, with up to seven orders of magnitude variation in
the cross section. The total NNLO prediction shown in
Fig. 2 is the sum of LO, NLO and NNLO contributions.
We can understand the relative shift in the theoretical
prediction from each perturbative correction by examin-
ing the K-factors shown in Fig. 3. We observe moderate
NLO/LO corrections from +10% at low mjj and |y⇤| to
+50-70% at highmjj and high |y⇤|. The NNLO/NLOK-
factors are typically < 10% in magnitude and relatively
flat, although they alter the shape of the prediction at
low mjj and low |y⇤|.

To emphasize the size and shape of the NNLO correc-
tion, in Fig. 4 we show the distributions normalized to
the NLO prediction. On the same plot we show the pub-
lished ATLAS data, also normalized to the NLO theory
prediction. We observe good agreement with the NNLO
QCD prediction across the entire dynamical range in mjj

and |y⇤| and a significant improvement in the description
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FIG. 4: The NLO (blue) and NNLO (red) theory predictions
and ATLAS data normalized to the NLO central value. The
bands represent the variation of the theoretical scales in the
numerator by factors of 0.5 and 2. Electroweak e↵ects are
implemented as a multiplicative factor and shown separately
as the green dashed line.

of the data for low mjj and |y⇤|, where NLO does not
adequately capture the shape nor the normalization. We
include the electroweak e↵ects as a multiplicative factor,
as calculated in [12], and note that in the region where
they are non-negligible (|y⇤| < 0.5, mjj > 2 TeV) they
improve the description of the data.
We generally observe a large reduction in the scale vari-

ation and small NNLO corrections. An exception to this
conclusion is found at low mjj and |y⇤| < 1.0; in this
case we observe NNLO scale bands of similar size to the
NLO bands, and a negative correction of approximately
10% such that the NNLO and NLO scale bands do not
overlap. To understand this behaviour in more detail we
investigate specific bins of mjj and |y⇤| and study the
scale variation inside that bin, as shown in Fig. 5.
The left pane of Fig. 5 shows the scale variation in the

bin 370 GeV < mjj < 440 GeV and 0.0 < |y⇤| < 0.5,
which is the region where the NLO and NNLO scale
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of the data for low mjj and |y⇤|, where NLO does not
adequately capture the shape nor the normalization. We
include the electroweak e↵ects as a multiplicative factor,
as calculated in [12], and note that in the region where
they are non-negligible (|y⇤| < 0.5, mjj > 2 TeV) they
improve the description of the data.
We generally observe a large reduction in the scale vari-

ation and small NNLO corrections. An exception to this
conclusion is found at low mjj and |y⇤| < 1.0; in this
case we observe NNLO scale bands of similar size to the
NLO bands, and a negative correction of approximately
10% such that the NNLO and NLO scale bands do not
overlap. To understand this behaviour in more detail we
investigate specific bins of mjj and |y⇤| and study the
scale variation inside that bin, as shown in Fig. 5.
The left pane of Fig. 5 shows the scale variation in the

bin 370 GeV < mjj < 440 GeV and 0.0 < |y⇤| < 0.5,
which is the region where the NLO and NNLO scale

E.W.N. Glover et. al. (2017)
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Figure 5: Theoretical predictions for the 2D (left) and 3D (right) cross sections, as a function of
m1,2, illustrated here in the rapidity regions 1.0 < |y|max < 1.5 and yb < 0.5, y⇤ < 0.5, together
with the corresponding six-point scale uncertainty for µR = µF = m1,2 using the CT18 NNLO
PDF set. In the upper panels, the curves and symbols are slightly shifted for better visibility.
The lower panels show the ratio to the respective prediction at LO. The fluctuations in the
NNLO predictions are due to the limited statistical precision of the calculation.

hadronization (HAD) effects, as given by a chosen MC event generator,

cNP =
sPS+MPI+HAD

sPS , (6)

where the parton shower (PS) is considered to be a perturbative component.

The model dependence of the NP corrections is evaluated by comparing results from several
MC event generators. Leading-order particle-level predictions are obtained from PYTHIA (ver-
sion 8.240), using the tunes CUETP8M1 [18] and CUETP8M2T4 [44], and HERWIG++ [45] (ver-
sion 2.7.1) using the EE5C tune [46]. These generators are interfaced to POWHEG [47–50] (ver-
sion 2J V2 Mar2016) to provide NLO predictions. An additional set of predictions is obtained
from HERWIG 7 [51] (version 7.2.2) with the CH3 tune [52] at both LO and NLO.

To mitigate statistical fluctuations, the corrections are parametrized by a smooth function
f (x) = a/xb + c, where x is either m1,2 or hpTi1,2. The parameters a, b, and c are obtained
in a least-squares fit to the binwise correction factors cNP obtained from Eq. (6) in each rapidity
region. For a number of low-m1,2 bins, where the phase space is constrained by the minimum
pT requirements on the two leading jets, the value of cNP is taken directly as the correction fac-
tor. The final correction factor in each bin is obtained as the midpoint between the largest and
smallest value of cNP obtained across all MC configurations, and half the difference between
the largest and smallest value is assigned as an uncertainty.

The resulting NP corrections are illustrated in Fig. 6. For jets with R = 0.4, the contributions
from hadronization and MPI largely cancel, leading to NP corrections compatible with unity
within their uncertainty. In contrast, the MPI contribution dominates for jets with R = 0.8,
resulting in significantly larger NP corrections of ⇡20% at low values of m1,2. The size of the
uncertainty is similar for both jet sizes.

Based on the Fast grids
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9 Comparison to theory

An overview of the unfolded cross sections obtained for the 2D and 3D measurements and the
corresponding fixed-order theoretical predictions at NNLO, complemented by NP and elec-
troweak corrections, is presented in Fig. 8. For a more detailed comparison, ratios of the mea-
sured cross sections to the theoretical predictions are shown in Figs. 9 and 10.

The theoretical predictions are obtained using recent NNLO PDF sets available via the LHAPDF [54]
library (version 6.3.0), namely ABMP16 [55], CT18 [56], MSHT20 [57], and NNPDF3.1 [58]. All
PDF sets are derived in global fits to data from multiple experiments while fixing the value
of the strong coupling constant aS(mZ) to 0.118, except for ABMP16, where aS(mZ) = 0.1147
is determined in the fit together with all other parameters. The uncertainties in the cross sec-
tion predictions due to the PDFs are calculated as 68% confidence intervals following the pre-
scriptions given in the respective references. The PDF uncertainty bands shown in Fig. 10 are
obtained using the CT18 PDF set and do not account for the finite precision of aS(mZ).

The predictions for different PDFs are generally in agreement with each other within the PDF
uncertainties, except for the AMBP16 PDF, for which the predicted cross sections are generally
smaller than those for other PDFs. At large m1,2 or hpTi1,2, the predictions obtained for the
different PDF sets show a diverging trend, while still remaining compatible within the PDF
uncertainties.

The level of agreement between the theoretical predictions and the data is observed to be good
in most phase space regions, with some deviations at the lower ends of the spectra and in
the outer rapidity regions. In general, the theoretical predictions for R = 0.8 are observed
to provide a better description of the data than for R = 0.4, which is consistent with past
observations [43, 59–62].
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Figure 8: Differential dijet cross sections, illustrated here for the 2D measurement as a function
of m1,2 using jets with R = 0.8 (left), and the 3D measurement as a function of hpTi1,2 using jets
with R = 0.4 (right). The markers and lines indicate the measured unfolded cross sections and
the corresponding NNLO predictions, respectively. For better visibility, the values are scaled
by a factor depending on the rapidity region, as indicated in the legend. Analogous plots for
all other jet sizes and observables can be found in Appendix B.
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1 Introduction

The production of jets in high-energy proton-proton (pp) collisions provides an important ex-
perimental input for the determination of the proton structure in terms of parton distribution
functions (PDFs), and for the study of the strong force described by quantum chromodynam-
ics (QCD). In conjunction with deep-inelastic e±p scattering (DIS) measurements [1, 2], which
strongly constrain the quark PDFs, jet data from pp collisions at the LHC provide sensitivity to
the gluon content and allow the running of the strong coupling constant aS to be probed over
a wide range of momentum scales. Recent progress made in calculating predictions for these
processes at next-to-next-to-leading order (NNLO) accuracy [3, 4] in perturbative QCD (pQCD)
underscores the need for precise experimental data up to the highest accessible energies.

Dijet observables are particularly well-suited for this purpose owing to the abundant produc-
tion of jets in hadron-induced processes across a large phase space, which makes it possible
to perform high-precision multi-differential measurements. Such measurements performed
at the LHC include a triple-differential (3D) dijet measurement at a center-of-mass energyp

s = 8 TeV [5] using jets reconstructed with the anti-kT clustering algorithm [6, 7] with a dis-
tance parameter R = 0.7, and several double-differential (2D) measurements at 7 and 13 TeV [8–
12] for anti-kT jets with R = 0.4, 0.6, or 0.7.

In this article, measurements of the dijet production cross section in pp collisions at
p

s =
13 TeV from the CMS Collaboration are presented, using anti-kT jets for two values of the dis-
tance parameter, R = 0.4 and 0.8. Both 2D and 3D measurements are performed as a function of
the kinematic properties of the two jets with the highest transverse momenta (pT) in the event.

In the 2D case, the cross section is measured as a function of the largest absolute rapidity |y|max
of the two jets and the invariant mass m1,2 of the dijet system. For the 3D measurements, two
angular observables are considered: the dijet rapidity separation y⇤ = |y1 � y2|/2 and the total
boost of the dijet system yb = |y1 + y2|/2, where y1 and y2 indicate the rapidities of the jets. The
measurements are performed as a function of y⇤, yb, and m1,2, and alternatively as a function
of y⇤, yb, and the average pT of the two jets, hpTi1,2.

The 2D and 3D measurements cover a largely overlapping phase space. However, each of
the two presents different experimental advantages stemming from the difference in the infor-
mation content of the respective observables. The 2D measurement features a more inclusive
rapidity binning, leading to an increased statistical precision and a larger accessible range in
m1,2. The use of two angular observables for the 3D measurement provides additional infor-
mation on the dijet topology, at the expense of a reduced reach in m1,2. Moreover, the vari-
ables y⇤ and yb encode the dependence on the partonic scattering angle in the laboratory frame
and the imbalance in the initial-state parton momenta, respectively. This is advantageous for
comparisons to fixed-order pQCD predictions, which are obtained by convolving the partonic
scattering cross sections and the PDFs.

This article is organized as follows. A brief description of the CMS detector is given in Section 2.
Section 3 presents the samples of recorded and simulated events used for the measurement. In
Section 4, the reconstruction of the event content is described, and the selection criteria applied
to events entering this analysis are given. Sections 5 and 6 detail the measurement of the 2D
and 3D dijet cross sections using the reconstructed jets, and the unfolding of the resulting spec-
tra to correct for detector effects, respectively. The different sources of experimental uncertainty
in the measurement are outlined in Section 7. The measurements are compared to fixed-order
predictions obtained at NNLO accuracy in pQCD, which are discussed in Section 8. A compar-
ison of the measurements to the predictions obtained for several global PDF sets is presented in
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Figure 7: Electroweak correction factors obtained for jets with R = 0.4 (left) and 0.8 (right) as
a function of m1,2 in the five different |y|max regions. The corrections depend strongly on the
kinematic properties of the jets and are observed to be largest at central rapidities for m1,2 >
1 TeV.

EW corrections are important for central rapidity and high invariant mass region. 
As high as 20%. 

 Elsewhere they can be ignored.



Outlook

With the advent of high energy colliders, we have huge jet production 

cross sections at hadron colliders. 

Differential distributions are available now at NNLO 

Attempts towards N3LO calculation are on-going. 

Extremely tedious and time consuming calculations. 

Can be useful for the measurement of the strong coupling constant 

and the parton distribution functions from the experimental data. 
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