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Kinematics of Deep Inelastic
Scattering



at is inside nucleo

e Basic Idea: Smash a well known probe on a nucleon or
nucleus in order to try to figure out what it is made of.

p Jet

e Electrons are well suited for that purpose because their interactions are well understood.

e Deep Inelastic Scattering: Collision between an electron and a nucleon or nucleus by

exchange of a virtual vector boson (photon, Z, W).

e Variant: Collisions with a neutrino (then only Z, W are possible).



Kinematic Variables

e We consider inclusive DIS where we sum over all hadronic
final states X:

e (1) + N(p) —» e~ () + X(py)

e On-shell conditions: p?> = M?, > = |2 = m?
e Measure energy and polar angle of scattered electron (E’, )

e Other invariants of the reaction:
e Q?=—¢g*= —(I - l')2 > 0, the square of the momentum

transfer

° y:p-q/MNa:bE/fE//

e x=Q?/(2p- q), the Bjorken scaling variable
e y=p-q/p-/ 2 (Ei — Eyr)/E; the inelasticity parameter
e s = (/4 p)?, the cms energy

e The 'lab’ frame designates the rest frame of the nucleon
p=(M,0,0,0).



Kinematic Variables

e There are only two independent variables to describe the kinematics of inclusive DIS (up
to trivial azimuthal angle dependence):

(E',0) or (x,Q%) or (x,y) or.
e Relation between @2, x, and y:

Q2 =(2p-1) <2§.2q> (2pp.-q/)

=(2p-Nxy=(s—M?>—m?*)xy

e Invariant mass W of the hadronic final state X: (also called missing mass since only
outgoing electron is measured)

W2=M;=(p+q°=M+2p-q+¢° e elastic scatteringg W =M, x=1
:I\/I2+Q—2—QQ:I\/I2+Q21_X e inelasticc W > M+ m,, x<1
X X



The DIS Cross Section as Function of W
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e Elastic peak: W = M, x =1 (proton does not break up)

e Resonances: W = Mj, 1/x = ... (resonances of the proton are exited, note that there is

also non-resonant background)
e Inelastic region: W > 1.8GeV (complicated multiparticle final state results in a smooth
distribution) (note that there are also charmonium and bottonium resonances at higher

energies)



Phase Space of DIS
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Phase Space of DIS
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Cross sections for inclusive DIS



The cross section for inclusive ep — eX

l/

e We consider inclusive DIS where we sum over all hadronic final
states X:

e () + N(p) = e () + X(py)

e The amplitude A is proportional to the interaction of a leptonic current j with a hadronic
current J:

1,
AN?j/ Jp_

e The leptonic current can be readily evaluated in perturbative QED:

j# = <//75/’

f“) /,S/> = lj(//.,S//)’}/MU(/,S/)

e The hadronic current is non-perturbative and depends on the multi-particle final state over
which we sum:

= (X, sx |

'D75P>




The cross section for inclusive ep — eX

The cross section which is proportional to the amplitude squared can be factored into a
leptonic and a hadronic piece:

do ~ |A]? ~ L, WH

L e [,,: Leptonic tensor
(calculable in perturbation theory)

WY e W*H”: Hadronic tensor (non-perturbative)




The cross section for inclusive ep — eX

da3r 1 e*
@n)%2E _ F (@)

B
LoWar| S
# W} (27)32E

1
do = = (|Ax[")sindQx
X

e With the Moller flux: F = 4/(/ - p)? — m? M?
e The phase space of the hadronic final state X with Nx particles:

N
x 43
dQx = (2m)*6™(p + g — px) H (27r)73p§Ek
k=1

= (2m)*s@W(p + q — px)ddx

e The amplitude with final state X:

e2 2

Ax =1 (" u(DI (X [ (0) N(p)),  Ax = % (1" u(I)](N(p) |4, (0)] X)




The cross section for inclusive ep — eX

d3//
(27)32E

4o =3 LA Dmd@e s Sl Z LT g
g = — = X spin X(27T)32E, - = (q2)2 v ™

The leptonic tensor is given by:

L, = 25252 Nyu (/)

1
:;{WU+mm4/+mﬂ
=2 [/ﬂlxlx + /V/;/L —gu (-1~ m/z)] =Ly,

The hadronic tensor is defined as:

Wy = o > [ 40x(@m5p + a - pr)N(R) [A0)] X)X (0 (o)

= / dy & (N(p) | [ (v), 4(0)] | N(p))
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The hadronic tensor and structure functions

e The hadronic tensor W, ,,(p, q) cannot be calculated in
perturbation theory.

e BUT: we can write down the most general covariant expression for
Winu(p, 9)-

e Also other symmetries like current conservation, parity, etc. have
to be respected (depending on the interaction).

e All possible tensors using p*, g”:

\ 8w PuPvs QuQus Puly + PuQus €uvpo P97, PuGy — Puqy

e For a (spin-averaged) nucleon, the most general covariant expression for W, ,,(p, q) is:

PuP ) p’q’
;\Lﬂ;j W2 — IEIU’PUW W3

Auqu Puqu + Puqu Puqv — Pvqy
+ Y Wy + 2 Ws + 2 We
e The structure functions W; can depend on the Lorentz-invariants M?, @2, x and internal

W,u,u(pa q) = —8uv Wi +

masses. 11



The hadronic tensor and structure functions

PuPv . P q°
W,u,,l/(pv q) = —8uv Wl + ;\22 W2 - leuupo’W W3
9.9v W, + Puqv + Pvqu Wi + Prqv _QPVqH W

M?2 M2 M

+

W35 =0 and W = 0 for parity conserving currents.

We does not contribute to the cross section.

Since gL, ~ m,2 the structure functions W, and Ws contribute proportional to the

lepton mass squared in the cross section (usually negligible).

Parity and time reversal symmetry of QCD imply: W, = W,,,

12



The hadronic tensor and structure functions

PuPv . p’q°
Wu,u(pa q) = —8uv Wi + ;;,2 Wo — lEquaW W3
9uQv Puqv + Pvqy PuQv — Pvqu
+ M2 Wy + W2 Ws + W2 We

e Current conservation at the hadronic vertex implies g W,,, = ¢*W,,,, = 0:

p-q p-q\’ M?
Ws = ——W,, Wy = <2> Wo + — W
q q q

e For the spin-averaged hadronic tensor with photon exchange we are left with 2
independent structure functions:

q"q” 1 . P q . P q
uu:(_guu+q2>W1+,w2<pl_2q;)< _qzCI)W2

W,

13



The cross section for inclusive ep — e X

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting my):

d2 g - a2 S ) ,
JEA ~ amEzsni(gy2) 206 @)sin (0/2)+ Walx, Q) cos*(6/2)]

Usually used:

2 2
{F17F27F3}_{W17 Q Q }

S VY
2xM2’ xM2 "3

The DIS cross section in terms of Lorentz-invariants (photon exchange, neglecting m;):

2o B 4ralS
dxdy  Q*

(X2 Fi(x, Q%) + (1 — y — xy M?/S)Fa(x, Q%)]
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The naive parton model



The naive parton model

e The naive parton model assumes that the nucleon is a collection of point-like constituents
called partons.

e At high momentum (infinite momentum frame) the partons are free (non-interacting).
Therefore the interaction of one parton wih the electron does not affect the other partons.

e In the infinite momentum frame, we have P ~ (Ep,0,0, Ep) with Ep > M. The partons
are moving parallel with the proton carrying a fraction &£ of its momentum p = £P.

15



The naive parton model

do(e(/) + N(P) — e(I') + X(px)) = /f(x do(e(l) +i(xP) — e(I') + i(p"))

We have replaced the scattering off the complicated nucleon with:

e The incoherent sum over all possible partonic processes.
e Parton densities: £;(£)d¢ describes the number of parton i with momentum fraction in

[€,€ + d€].

e Elastic scattering off point-like partons. 16



The naive parton model

UEGURDY / )" (¢P. q)

e W/": partonic tensor calculable perturbatively

1

e f;(£): parton distributions, non-perturbative but universal

17



Structure functions in the parton model

We will calculate the contribution of a spin-1/2 parton of type i to the partonic tensor:

N d*p’ 4c(4 / “w, Nl
W= / (P ) SR +q = p)EP |41 (0)] ) (e 1 (0)1€P)

= 56((5/3 +q)*)(€P [ 1(0)| P + g){¢P + q|J”(0)| £P)

This is the same calculation as we have already done for the leptonic tensor:

i = %a((gp +))etr [6P7 (6P + g)r"]

I 2 pP. pP.
Suc e 5) o) o)

We see that the result is proportional to §(1 — X) with X = x/¢.

18



Structure functions in the parton model

e The contribution of a spin-1/2 parton of type i to the partonic tensor is given by:

"% € v tq” 2€ ’D v VP'
W = Q0 =R K_g# _%) TP (Pu qzq) (P 9 qfﬂ

e If the parton density is given by £;(£), then the full contribution to the hadronic tensor

reads:

WHY — Z/dg A/ll/

e The corresponding structure functions read:

(x, Q%) = 5 Ze fi(x), Fa(x, Q%) = 2xF1(x, Q?), Fi(x, Q?) = Fa(x, Q%) — 2xFi(x, Q%) =

19
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Structure functions in the parton model

The parton model can explain:

e Bjorken scaling:
Fi(x, @?) = Fi(x) for @ — oo, v — oo with x = Q?/2Mu fixed

e The Callan-Gross relation:
F> = 2xFy or Fi = 0, which holds for spin-1/2 fermions (for spin-0 we have i.e. F, = F).

e BUT:

e How can the partons be free in a strongly bound state?
asymptotic freedom

e [ is not 0.
higher order corrections, Z exchange, quark masses

e What is the field theoretic description of the parton model?
operator product expansion

22



Asymptotic Freedom
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Operator Product Expansion



Operator Product Expansion

How does the parton picture emerge from a field theoretic point of view?

e The hadronic tensor is related to the imaginary part of the forward compton amplitude via
the optical theorem:

1
Wp,z/(pa q) = glmTuu(pa q)

with
Tulpa) =i [ d*ze92(P|T (J}(2)4,(0))| P
e In the Bjorken-limit the hadronic tensor is dominated by contributions near the light-cone:
z22~0

e In this setting we can expand the product of currents:

T (4(2)4(0) ~ Y crpw(Z®) 4 0py 1, (0)7

iyT,n

24



e The O"7(0) are different local operators with the same twist 7 = dim — spin
(spin n <+ symmetric traceless tensors with n indices).

e The ¢! are the Wilson coefficients, which scale like ¢/ ~ v 22"

e The leading term in the expansion has twist 7 = 2, with the operators:

- A
NS N-1 r
Oq,r:m,-<~7um =18 | Yy, Dy, ... Dyy, ?1/1 — trace terms
S N—1c [T
O3 vy = 1" 8 [0 Dpsy - Dy ] — trace terms
s _ oiN=2 :
OF oy = 2" 28 [F o Dpy- Dy Fi7] — trace terms




Operator Product Expansion

e We find for the forward compton amplitude:

N
1 9uqv
Tuu - <P|Z <Q2) l:(g;w - qu ) 91190, CZYJ
N.j

N {11y
e o e i - o e M s -0 e ) | et e e e

+ higher twist|P)
e The hadronic operator matrix elements are defined by:

<P’OJ'7{M1,-~~7NN}‘P> = p{llrln_p/lr/v}AJl')yN

1\" Quqv \ ~N 4x° 2x N |
T = Z (;) [(gm’ - 22 CL,j +{ —8uw — ?Pupv - ?(Puqu + Puqu) duy C2,j AJP,N
N.j

26



Operator Product Expansion

1 N b 4x°? 2x ;
Tuw = Z <X> [(guv - ql;g ) CLA,Ij + (_guu - ?PMPV - ?(Puqv + quu)> dul’c2,\,lj:| AJP,N

e We find an expansion for unphysical x (x — c0), which defines Mellin moments.
e The hadronic matrix elements AJ,'D y are related to (moments) of the parton densities.

e For the calculation of the perturbative Wilson coefficients we use partonic states.
= Then all loop corrections to the matrix elements vanish.

(i[Ot j) ~ 55, ij=ag

27



Mellin-Space

e In the parton picture we saw:

1 1 1
wh N/%ﬁ(g)‘f‘//w(f) :/d}ﬁ/d}/2ﬁ(Y1)VAV,'W(}’2)5(X—)/1)/2) [fi @ w/"] (x)
0 0

X

e Mellin transformation:
Mgl (N /dxx

e The Mellin transform diagonalizes the convolution:

M[f ® gl (N) = /dXXN_l [f © g] (x) = M[f](N) M[g](N)

e Tomorrow also the generating function will be important:
glrl(z) Z tN M1 (N

28



Mellin-Space — Relations between different spaces

fH =3 & f
N=1

700 = faa
0

a1 f(2)

Mm:ﬁT

—100

=N f(N)AN

o 7(t) = F(N) and f(x) — F(N): calculable via recurrence
equations

o f(N) — f(x): calculable via differential equations

e 7(t) — f(x): calculable via analytic continuation

but: algorithmic solution only possible if recurrences or differential
equations factorize to first order

29



Mellin-Space — Relations between different spaces

1

=Y Fme =Y [ et = [ax o)

N=1 N=1 5

Setting t = 1 we obtain:

30



Mellin-Space — Relations between different spaces

- w 1 1
o = yN—1 o / t ! o
_Zf( Z/dxtx f(x)—/dx 71—tx’f(x) I i |

0 0 ;

N=1 N=1

0’ r—i 1
Setting t = 1 we obtain:
v
N\ [, ) s
f()Z/dX/ al 0 o
X x —x'
0
B
Therefore: ~ .
R4
f(x) = == lim 7{ i) ! Disc £( = ' ' 1
2760 | x—x'" 27 x
|[x—x"|=8
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Beyond Bjorken Scaling

The Wilson coefficients above are not infrared safe.

The operators need to be renormalized:

0 =>" 27,0 j=q.¢g

9.8

The operator renormalization cancels the remaining infrared poles of the Wilson
coefficients (mass factorization).

Tg,p = [CI{'\,-I7quP + CII—'\/IﬁngP} AD

p,ren

We find a renormalization group equation:

d
Z HM2dM2 +ﬂ} Oik — %‘k] Ck=0,

k=q.g

with the anomalous dimensions (splitting functions)

d
i=P==2Z) 2zt
w=[(#327) 77,

31



Applicability of the parton picture

I’

e We saw two pictures of the proton:

e the partonic picture of the proton at short distances
e the operator picture of the proton at short distances

e Both pictures yield the same results at twist 7 = 2.

e Only the latter one can be extended consistently.

32



Applicability of the parton picture

e The parton picture is valid if the interaction time of the virtual gauge boson with the
hadron T, is small compared to the life-time of individual partons Tint/Tiife << 1.

e Approximately we have:
1 4Px
@ Q@P1-x)’
1 2P

e SE—E) SR+ mE)x— M

i i

Tint ™~

e As a model: m,-27 M2 =0, kii = kf_, X1 =X, xo=1—x:

Tite  Q*(1 —x)?

= 1
T T

i.e. @2 > k2 and x neither close to 1 or 0 (xP > 1).

e There is no parton model at low Q?, there also the light-cone expansion breaks down.
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Heavy Quark Production in DIS



ark Production

There are two possible ways for heavy quark production in DIS:

1. Intrinsic heavy quark contributions:

Postulate that there is a heavy quark component to the
nucleon wave function.

Treat the heavy quark in the same way as the light quarks in
the factorization of the structure functions.

Several experimental and theoretical studies suggest that the
intrinsic contribution is small.

We will not discuss these contributions further.

34



Heavy Quark Production in DIS

There are two possible ways for heavy quark production in DIS:

2. Extrinsic heavy quark production:
e The heavy quarks are only produced in the final state (or as
virtual states).
e The proton wave unction only contains massless quarks
(u,d,s) and gluons (g).
= This scheme is also known as the fixed flavor number
scheme (FFNS).

&3



Heavy Quark Production at LO

Consider F£¢(x, Q2):

FLO(x, Q%) = ehau(@?) dy HD ( m

ax

2
%) 6y, @)

2

2
) p1oonavseca] [

+2—22(3Z*1)+4Q4 }ln(%)}
F2rt 4 {(z2+(1_2)>|n(2z . >+8(1—z)—1}

c
Massless Wilson coefficient:

cz(lg)(z%)—wp{( + (@27 (52122)%2(172)71]

We see:

m?. Q%> m? Q? m?
H(l ( Qz) = Cz(,léz(zv ?) —4Tg (22 +(1- 2)2) In <—)

Is this accidental? 36



Heavy Quark Production in the Asymptotic Limit

The structure functions factorize

Q2 m2 5
Fo,n(x, Q%) Z Ci a0 X B2 ® fi(x, 1)

nonpert.

perturbative

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
We can split the Wilson coefficients into massless and heavy flavor contributions:

Q2 m2 QQ QZ m2
Ci20) (/V, )T G.eu | N, 7 + Hj e [ N, w2 E)

At Q? > m? the heavy flavor part

QZ m2 QZ m2 2
Hj.,(2,L) (N7?,“fz :Zci‘(Q‘L) Ne/TQ Ajj e + O 02

[Buza, Matiounine, Smith, van Neerven (Nucl.Phys.B (1996))]
factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements
(OMEs).

37



Heavy Quark Production in the Asymptotic Limit

e The partonic operator matrix elements are defined as
Aii = (i |Okl i)

with the same twist 7 = 2 operators as before:

- A
NS N—1 r
Ogrimyn =1 S | VY Dyp--- Dy ?¢ — trace terms
s N—1c 7
O rpmryn =1 S (0¥, Dysy ... Dy 0] — trace terms
s _ 5iN=2 ,
OF vy = 2" 28 [F o Dyy.. Dy Fii?| — trace terms

e Since the heavy quark provides a scale, these quantities do not vanish beyond the
tree-level.

38



The heavy flavor Wilson coefficients in the asymptotic limit:

Ly o (NF +1) = 22 [A2- N5 (Np + 1 )52+CZ(>2NL)S(N )] + a [A;?'gS(NF+1)62+Ag?gS(N + )N (e + 1) + RS (NR)]

Ly (Ne + 1) = a2 [AD 55 (NF + 1)82 + NeAL 5 (Ne) EXNS (Ne + 1) + N ;() 5 (NF)]
L5 0.0y(NF +1) = a2AY) ((Nr + 1)Np EP)

A0, 5 2L(N,:+1)+a [A) o(NF +1)8 + AL ((NF + 1)NFCP

qg,Q g(

+ A(gg Q(NF + 1)NFC @0 (NF + 1) -+ AQg(NF + 1)NFCq2(2 0 (NF + 1) + NFC (NF)]

HY G >(NF+1) 2 [AS) TS (NE + 1) + EBTS (Ne + 1)

.y (N +1)

[A“) S (NE + 1)8 + AZ) o(NF +1)CE | (N +1) + AD TS (N + 1) ESLNS (N + 1) + COLS (Ne + 1)]

HS o, L)(N,:+1)_as[ 2 (N +1)8 + €, | (NF +1)]
aZ[A 5g> Ne +1)8 + AQ (N + 1) N, | (Ne +1) + AL ((Ne + 1)EN, | (Ne +1) + €3, | (NF + 1)
+ 82 [Ag (N + )82 + AZ (N + )€, |\ (N + 1) + A2 (NF + 1)55122 o (Ne +1)
+ AQ (N +1)CZLS (N + 1) + AY) o(NF + 1 BNe+1)+ €8, | (Ne + 1))

39



Validity of the Asymptotic Limit

;:::z 3 N
|
e Comparison to exact O(a?): |
o F5¢ needs Q*/m* > 10 |

o Ff€ needs Q*/m?® > 1000 2 ]

10! 102 10° 104 108

Q2/m2

Comparison of the asymptotic and exact two loop
contributions.
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Validity of the Asymptotic Limit

y
e Comparison to exact O(a?): o

o F5% needs Q*/m? > 10 v //
o Ff¢ needs Q?/m* > 1000 =
e Drawbacks:

0.6 |
e Power corrections (m?/Q%)%, k > 1

cannot be calculated.

04 7
e Only inclusive quantities can be

calculated.

102 10°

Q2/m2

108

Comparison of the asymptotic and exact two loop
contributions.
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Validity of the Asymptotic Limit

e Comparison to exact O(a?): /
o F5% needs Q°/m? > 10 8 /
o Ff¢ needs Q?/m?* > 1000 | /
e Advatanges:

0.6 |
e Calculation much easier compared to full

mass dependence.

= Opens up the possibility to consider

04
two heavy quarks.

e The massive OMEs can be used to 10 Toe

10° 104 108

define a variable flavor number scheme. Q%/m?

Comparison of the asymptotic and exact two loop

contributions.
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Variable Flavor Number Scheme

e Idea: When Q? > m? we can treat the heavy quark effectively as massless.

e Demand for the structure functions:

F,-(nf, Q2) + FicE,asymP(nf’ Q27 m2) — F,-VFNS(nf + 1’ Q2)

e By comparing both sides of the equation we can define new parton densities, which
become dependent on the heavy quark mass.

41



Variable Flavor Number Scheme

Matching conditions for parton distribution functions:

p 1 )
fi(NE + 1) 4 £(Ne + 1) = Ab> (NF +1, :%) - [fi(NF) + f(NF)] + — AR <NF +1, %) -2 (Nr)

N qq9,Q

1 m2
+ NfFAngQ <NF T i F) - G(NF) ,

2 2
Fo(Ne + 1) + F(Ne +1) = A% (NF 1, /ﬁ) CT(NF) + Ag (NF 1 /ﬂ) - G(Nr) .

NS mi PS m; Ps m2
Z(NF + ].) = Aqq.Q Ne +1, - + Aqq.Q Ne +1, F + AQq Ne + 1, P . Z(NF)

w

mi mi
—+ Aqg@ NF+1.',U,72 —|—AQg /\/,f:%*l,ﬂf2 ~G(NF),

2 2
G(NF+1) = Ago (NF +1, %) S (Ng) + Age.o <NF +1, %) - G(NF) .

42



Variable Flavor Number Scheme

FFNS VFNS
e Fixed order in perturbation theory and e Define a threshold above which the heavy
fixed number of light partons in the quark is treated as light, thereby obtaining
proton. a parton density.
e The heavy quarks are produced e Absorb mass singular terms from the
extrinsically only. asymptotic heavy quark coefficient
e The large logarithmic terms in the heavy functions and absorb them into parton
quark coefficient functions entirely densities.
determine the charm component of the e Resum large logarithms involving the mass.
i 2 . C
structure function for large values of Q<. e Provide heavy flavor initial state parton

desities for the LHC, e.g. for c5 — W.
Important:
e The VFNS is derived from the FFNS directly.

e New parton densities for the heavy quarks appear, which are now treated as light.

e Only universal (not power-supressed) terms are absorbed into the parton densities.
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Summary and Outlook



Not discussed:

e Charged Current DIS

e Polarized DIS

Target Mass Corrections

Parton Densities

Semi-Inclusive DIS
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Tomorrow:

e Higher order corrections to the massless, inclusive Wilson coefficients.
e Higher order corrections to the massive, inclusive Wilson coefficients.

e Methods for the calculation of massive operator matrix elements with one and two masses.
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Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation
1. has no (—1)V term.

2. is regular and has now contributions from distributions.

3. has a support only on x € (0, 1).
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Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation

1. has no (—1)V term.
2. is regular and has now contributions from distributions.

3. has a support only on x € (0, 1).

For physical examples:

/ a1 [£0) + (1)) + (6 + (-1)"gs) 60 -] + [ e T H [0 + ()" ()

0

All of this can be lifted, but the discussion is more involved.



Massive Wilson Coefficients

—————
We have to calculate the process:
A 4
q(p) +77(q) = Q(k1) + Q(kz),
[
with ¢ = —Q?% p?>=0, ki =ki=m? (p+q)2=5s=Q*(1—2)/z, B= /1 —4m?/s

° Parametrize the phase space:
p= 2\[ (1 0,0,1), ks = %(I,O,ﬂcostﬁ),ﬁsin(@)), ko = i(l 0, —Bcosf,—pFsin(0))

/ dPs, = / % / ((;f; (2m) 59 (p + q — ki — ko) (2m)25(k2)3(k2)

T i d/2—2 pd—3 . d-3
=2 ms /8 dé sin (9)

T

0



Massive Wilson Coefficients — Pure-Singlet

i ¢
1,,,,4 ,,,,, % B —
S o Jarse = ;>1/ ’/ ‘”/ 'm/ O o

1){/4’ 1){/4/ e {1 4:?2}4/’ 3/2 [l — Py g2 220,

S1p = 4m?, S19 = S,

tm = 0, tt = %(9 — q2)(s — S12)
ki = (k(’ 0,.... |K|sin(¢) sin(6), k| cos(¢) sin(0), |K| cos(e)) ,
ey = (ko 0,...,—k|sin(¢) sin(6), —|k| cos(¢) sin(6), —|k| cos(ﬁ)) ;
m = %(1,,..,0,0,1),
pr = ;_/:712 (1,0,...,sin(x), cos(x)),
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