
Deep Inelastic Scattering

15 January, 2024

Kay Schönwald

Bhubaneswar, January 15, 2024

University of Zürich
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What is inside nucleons?

• Basic Idea: Smash a well known probe on a nucleon or

nucleus in order to try to figure out what it is made of.

• Electrons are well suited for that purpose because their interactions are well understood.

• Deep Inelastic Scattering: Collision between an electron and a nucleon or nucleus by

exchange of a virtual vector boson (photon, Z, W).

• Variant: Collisions with a neutrino (then only Z, W are possible).
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Kinematic Variables

• We consider inclusive DIS where we sum over all hadronic

final states X:

e−(l) + N(p) → e−(l ′) + X (px)

• On-shell conditions: p2 = M2, l2 = l ′2 = m2

• Measure energy and polar angle of scattered electron (E ′, θ)

• Other invariants of the reaction:

• Q2 = −q2 = −(l − l ′)2 > 0, the square of the momentum

transfer

• ν = p · q/M2 lab
= El − El′

• x = Q2/(2p · q), the Bjorken scaling variable

• y = p · q/p · l lab
= (El − El′)/El the inelasticity parameter

• s = (l + p)2, the cms energy

• The ’lab’ frame designates the rest frame of the nucleon

p = (M, 0, 0, 0).
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Kinematic Variables

• There are only two independent variables to describe the kinematics of inclusive DIS (up

to trivial azimuthal angle dependence):

(E ′, θ) or (x ,Q2) or (x , y) or...

• Relation between Q2, x , and y :

Q2 = (2p · l)
(

Q2

2p · q

)(
p · q
2p · l

)

= (2p · l) x y = (s −M2 −m2) x y

• Invariant mass W of the hadronic final state X : (also called missing mass since only

outgoing electron is measured)

W 2 = M2
X = (p + q)2 = M2 + 2p · q + q2

= M2 +
Q2

x
−Q2 = M2 + Q2 1−x

x

• elastic scattering: W = M, x = 1

• inelastic: W ≥ M +mπ, x < 1
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The DIS Cross Section as Function of W

Data from SLAC, where

the elastic peak at

W = M has been

reduced by a factor 8.5.

[taken from Halzen, Martin,

Quarks and Leptons]

• Elastic peak: W = M, x = 1 (proton does not break up)

• Resonances: W = M∆, 1/x = ... (resonances of the proton are exited, note that there is

also non-resonant background)

• Inelastic region: W ≳ 1.8GeV (complicated multiparticle final state results in a smooth

distribution) (note that there are also charmonium and bottonium resonances at higher

energies)
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Phase Space of DIS
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Phase Space of DIS
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Cross sections for inclusive DIS



The cross section for inclusive ep → eX

• We consider inclusive DIS where we sum over all hadronic final

states X:

e−(l) + N(p) → e−(l ′) + X (px)

• The amplitude A is proportional to the interaction of a leptonic current j with a hadronic

current J:

A ∼ 1

q2
jµ Jµ

• The leptonic current can be readily evaluated in perturbative QED:

jµ = ⟨l ′, sl′
∣∣∣ĵµ

∣∣∣ l , sl⟩ = ū(l ′, sl′)γ
µu(l , sl)

• The hadronic current is non-perturbative and depends on the multi-particle final state over

which we sum:

Jµ = ⟨X , sX
∣∣∣Ĵµ

∣∣∣ P, sP⟩
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The cross section for inclusive ep → eX

The cross section which is proportional to the amplitude squared can be factored into a

leptonic and a hadronic piece:

dσ ∼ |A|2 ∼ LµνW
µν

• Lµν : Leptonic tensor

(calculable in perturbation theory)

• W µν : Hadronic tensor (non-perturbative)
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The cross section for inclusive ep → eX

dσ =
∑

X

1

F
⟨|AX |2⟩spindQX

d3l ′

(2π)32E ′ =
1

F

[
e4

(q2)2
LµνW

µν4π

]
d3l ′

(2π)32E ′

• With the Moller flux: F = 4
√

(l · p)2 −m2
l M

2

• The phase space of the hadronic final state X with NX particles:

dQX = (2π)4δ(4)(p + q − pX )

NX∏

k=1

d3pk
(2π)32Ek

= (2π)4δ(4)(p + q − pX )dΦX

• The amplitude with final state X :

AX =
e2

q2
[ū(l ′)γµu(l)] ⟨X |Jµ(0)|N(p)⟩, A∗

X =
e2

q2
[ū(l)γνu(l ′)] ⟨N(p) |Jν(0)|X ⟩
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The cross section for inclusive ep → eX

dσ =
∑

X

1

F
⟨|AX |2⟩spindQX

d3l ′

(2π)32E ′ =
1

F

[
e4

(q2)2
LµνW

µν4π

]
d3l ′

(2π)32E ′

The leptonic tensor is given by:

Lµν =
1

2

∑

sl

∑

sl′

ū(l ′)γµu(l)ū(l)γνu(l
′)

=
1

2
tr
[
γµ(/l +ml)γν(/l

′
+ml)

]

= 2
[
lµl

′
ν + lν l

′
µ − gµν(l · l ′ −m2

l )
]
= Lνµ

The hadronic tensor is defined as:

Wµν =
1

4π

∑

X

∫
dΦX (2π)

4δ(4)(p + q − pX )⟨N(p)
∣∣J†ν(0)

∣∣X ⟩⟨X |Jµ(0)|N(p)⟩

=

∫
dy e iqy ⟨N(p)

∣∣[J†ν(y), Jµ(0)
]∣∣N(p)⟩
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The hadronic tensor and structure functions

• The hadronic tensor Wµ,nu(p, q) cannot be calculated in

perturbation theory.

• BUT: we can write down the most general covariant expression for

Wµ,nu(p, q).

• Also other symmetries like current conservation, parity, etc. have

to be respected (depending on the interaction).

• All possible tensors using pµ, qν :

gµν , pµpν , qµqν , pµqν + pνqµ, ϵµνρσp
ρqσ, pµqν − pνqµ

• For a (spin-averaged) nucleon, the most general covariant expression for Wµ,ν(p, q) is:

Wµ,ν(p, q) = −gµνW1 +
pµpν
M2

W2 − iϵµνρσ
pρqσ

M2
W3

+
qµqν
M2

W4 +
pµqν + pνqµ

M2
W5 +

pµqν − pνqµ
M2

W6

• The structure functions Wi can depend on the Lorentz-invariants M2, Q2, x and internal

masses.
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The hadronic tensor and structure functions

Wµ,ν(p, q) = −gµνW1 +
pµpν
M2

W2 − iϵµνρσ
pρqσ

M2
W3

+
qµqν
M2

W4 +
pµqν + pνqµ

M2
W5 +

pµqν − pνqµ
M2

W6

• W3 = 0 and W6 = 0 for parity conserving currents.

• W6 does not contribute to the cross section.

• Since qµLµν ∼ m2
l the structure functions W4 and W5 contribute proportional to the

lepton mass squared in the cross section (usually negligible).

• Parity and time reversal symmetry of QCD imply: Wµν = Wνµ
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The hadronic tensor and structure functions

Wµ,ν(p, q) = −gµνW1 +
pµpν
M2

W2 − iϵµνρσ
pρqσ

M2
W3

+
qµqν
M2

W4 +
pµqν + pνqµ

M2
W5 +

pµqν − pνqµ
M2

W6

• Current conservation at the hadronic vertex implies qµWµν = qνWµν = 0:

W5 = −p · q
q2

W2, W4 =

(
p · q
q2

)2

W2 +
M2

q2
W1

• For the spin-averaged hadronic tensor with photon exchange we are left with 2

independent structure functions:

Wµν =

(
−gµν +

qµqν

q2

)
W1 +

1

M2

(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
W2
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The cross section for inclusive e p → e X

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting ml):

d2 σ

dE ′ dΩ′ =
α2

4ME 2 sin4(θ/2)

[
2W1(x ,Q

2) sin2(θ/2) +W2(x ,Q
2) cos2(θ/2)

]

Usually used:

{F1,F2,F3} =

{
W1,

Q2

2xM2
,
Q2

xM2
W3

}

The DIS cross section in terms of Lorentz-invariants (photon exchange, neglecting ml):

d2 σ

d xd y
=

4πα2S

Q4

[
xy2F1(x ,Q

2) + (1− y − x y M2/S)F2(x ,Q
2)
]
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The naive parton model



The naive parton model

• The naive parton model assumes that the nucleon is a collection of point-like constituents

called partons.

• At high momentum (infinite momentum frame) the partons are free (non-interacting).

Therefore the interaction of one parton wih the electron does not affect the other partons.

• In the infinite momentum frame, we have P ∼ (EP , 0, 0,EP) with EP ≫ M. The partons

are moving parallel with the proton carrying a fraction ξ of its momentum p̂ = ξP.
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The naive parton model

dσ(e(l) + N(P) → e(l ′) + X (pX )) =
∑

i

1∫

0

fi (χ)dσ(e(l) + i(χP) → e(l ′) + i(p′))

We have replaced the scattering off the complicated nucleon with:

• The incoherent sum over all possible partonic processes.

• Parton densities: fi (ξ)dξ describes the number of parton i with momentum fraction in

[ξ, ξ + dξ].

• Elastic scattering off point-like partons. 16



The naive parton model

W µν(P, q) =
∑

i

1∫

x

dξ

ξ
fi (ξ)ŵ

µν
i (ξP, q)

• ŵµν
i : partonic tensor calculable perturbatively

• fi (ξ): parton distributions, non-perturbative but universal
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Structure functions in the parton model

We will calculate the contribution of a spin-1/2 parton of type i to the partonic tensor:

ŵµν
i =

1

2

∫
d4p′

(2π)4
δ(p′

2
)(2π)4δ(4)(ξP + q − p′)⟨ξP

∣∣Jµ,†(0)
∣∣ p′⟩⟨p′ |Jν(0)| ξP⟩

=
1

2
δ((ξP + q)2)⟨ξP

∣∣Jµ,†(0)
∣∣ ξP + q⟩⟨ξP + q |Jν(0)| ξP⟩

This is the same calculation as we have already done for the leptonic tensor:

ŵµν
i =

1

4
δ((ξP + q)2)e2i tr

[
ξ /Pγµ(ξ /P + /q)γ

ν
]

= . . .

=
ξ

2
δ(ξ − x)e2i

[(
−gµν − qµqν

q2

)
+

2ξ

P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)]

We see that the result is proportional to δ(1− x̂) with x̂ = x/ξ.
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Structure functions in the parton model

• The contribution of a spin-1/2 parton of type i to the partonic tensor is given by:

ŵµν
i =

ξ

2
δ(ξ − x)e2i

[(
−gµν − qµqν

q2

)
+

2ξ

P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)]

• If the parton density is given by fi (ξ), then the full contribution to the hadronic tensor

reads:

W µν =
∑

i

1∫

x

dξ

ξ
fi (ξ)ŵ

µν
i

• The corresponding structure functions read:

F1(x ,Q
2) =

1

2

∑

i

e2i fi (x), F2(x ,Q
2) = 2xF1(x ,Q

2), FL(x ,Q
2) = F2(x ,Q

2)− 2xF1(x ,Q
2) = 0
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Structure functions in the parton model

The parton model can explain:

• Bjorken scaling:

Fi (x ,Q
2) = Fi (x) for Q

2 → ∞, ν → ∞ with x = Q2/2Mν fixed

• The Callan-Gross relation:

F2 = 2xF1 or FL = 0, which holds for spin-1/2 fermions (for spin-0 we have i.e. F2 = FL).

• BUT:

• How can the partons be free in a strongly bound state?

asymptotic freedom

• FL is not 0.

higher order corrections, Z exchange, quark masses

• What is the field theoretic description of the parton model?

operator product expansion
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Asymptotic Freedom

d

dµ

αs

4π
= β(as) = −

(αs

4π

)2
(
b0 + b1

αs

4π
+ b2

(αs

4π

)2

+ b3
(αs

4π

)3

+ b4
(αs

4π

)4

+ ...

)

b0 =
11

3
CF − 4

3
nf TF , ...
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Operator Product Expansion



Operator Product Expansion

How does the parton picture emerge from a field theoretic point of view?

• The hadronic tensor is related to the imaginary part of the forward compton amplitude via

the optical theorem:

Wµν(p, q) =
1

2π
ImTµν(p, q)

with

Tµν(p, q) = i

∫
d4ze iq·z⟨P

∣∣T
(
J†µ(z)Jν(0)

)∣∣P⟩

• In the Bjorken-limit the hadronic tensor is dominated by contributions near the light-cone:

z2 ∼ 0

• In this setting we can expand the product of currents:

T
(
J†µ(z)Jν(0)

)
∼

∑

i,τ,n

cτ,µ,ν(z
2)i,µ1,...,µnOµ1,...,µn(0)

i,τ
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• The O i,τ (0) are different local operators with the same twist τ = dim − spin

(spin n ↔ symmetric traceless tensors with n indices).

• The c iτ are the Wilson coefficients, which scale like c iτ ∼
√
z2

τ
.

• The leading term in the expansion has twist τ = 2, with the operators:

ONS
q,r ;µ1,...,µN

= iN−1S
[
ψ̄γµ1Dµ2 ...DµN

λr
2
ψ

]
− trace terms ,

OS
q,r ;µ1,...,µN

= iN−1S
[
ψ̄γµ1Dµ2 ...DµN

ψ
]
− trace terms ,

OS
g ,r ;µ1,...,µN

= 2iN−2S
[
F a
µ1αDµ2 ...DµN

Fα,a
µN

]
− trace terms
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Operator Product Expansion

• We find for the forward compton amplitude:

Tµν = ⟨P
∣∣∑

N,j

(
1

Q2

)N [(
gµν − qµqν

q2

)
qµ1qµ2C

N
L,j

−
(
gµµ1gνµ2q

2 − gµµ1qνqµ2 − gνµ2qµqµ1 + gµνqµ1qµ2

)
CN
2,j

]
qµ3 . . . qµN

O j,{µ1,...,µN}

+ higher twist
∣∣P⟩

• The hadronic operator matrix elements are defined by:

⟨P
∣∣O j,{µ1,...,µN}∣∣P⟩ = p{µ1 ...pµN}Aj

P,N

Tµν =
∑
N,j

(
1

x

)N [(
gµν − qµqν

q2

)
CN
L,j +

(
−gµν − 4x2

q2
pµpν − 2x

q2
(pµqν + pνqµ)

)
dµνC

N
2,j

]
Aj

P,N
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Operator Product Expansion

Tµν =
∑
N,j

(
1

x

)N [(
gµν − qµqν

q2

)
CN
L,j +

(
−gµν − 4x2

q2
pµpν − 2x

q2
(pµqν + pνqµ)

)
dµνC

N
2,j

]
Aj

P,N

• We find an expansion for unphysical x (x → ∞), which defines Mellin moments.

• The hadronic matrix elements Aj
P,N are related to (moments) of the parton densities.

• For the calculation of the perturbative Wilson coefficients we use partonic states.

⇒ Then all loop corrections to the matrix elements vanish.

⟨i
∣∣O j,{µ1,...,µN}∣∣j⟩ ∼ δi,j , i , j = q,g
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Mellin-Space

• In the parton picture we saw:

W µν ∼
1∫

x

dξ

ξ
fi (ξ)ŵ

µν
i (ξ) =

1∫

0

d y1

1∫

0

d y2fi (y1)ŵ
µν
i (y2)δ(x − y1y2) = [fi ⊗ ŵµν

i ] (x)

• Mellin transformation:

M [g ] (N) =

∫
dx xN−1 g(x)

• The Mellin transform diagonalizes the convolution:

M [f ⊗ g ] (N) =

∫
dxxN−1 [f ⊗ g ] (x) = M[f ](N)M[g ](N)

• Tomorrow also the generating function will be important:

G[f ](t) =
∞∑

N=1

tN M [f ] (N)
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Mellin-Space – Relations between different spaces

f̂(t) =
∞∑

N=1

tN f̃(N)

f̃(N) =
1∫
0

dxxN−1 f(x)

f(x) = 1
2πi

i∞∫
−i∞

x−N f̃(N)dN

• f̂ (t) → f̃ (N) and f̂ (x) → f̃ (N): calculable via recurrence

equations

• f̃ (N) → f (x): calculable via differential equations

• f̂ (t) → f (x): calculable via analytic continuation

but: algorithmic solution only possible if recurrences or differential

equations factorize to first order
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Mellin-Space – Relations between different spaces

f̂ (t) =
∞∑

N=1

f̃ (N)tN =
∞∑

N=1

1∫

0

dx ′ tNx ′
N−1

f (x ′) =

1∫

0

dx ′
t

1− tx ′
f (x ′)

Setting t = 1
x we obtain:

f̂

(
1

x

)
=

1∫

0

dx ′
f (x ′)
x − x ′

Therefore:

f (x) =
i

2π
lim
δ→0

∮

|x−x′|=δ

f (x ′)
x − x ′

=
i

2π
Disc
x

f̂

(
1

x

)
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Mellin-Space – Relations between different spaces

f̂ (t) =
∞∑

N=1

f̃ (N)tN =
∞∑

N=1

1∫

0

dx ′ tNx ′
N−1

f (x ′) =

1∫

0

dx ′
t

1− tx ′
f (x ′)

Setting t = 1
x we obtain:

f̂

(
1

x

)
=

1∫

0

dx ′
f (x ′)
x − x ′

Therefore:

f (x) =
i

2π
lim
δ→0

∮

|x−x′|=δ

f (x ′)
x − x ′

=
i

2π
Disc
x

f̂

(
1

x

)
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Beyond Bjorken Scaling

• The Wilson coefficients above are not infrared safe.

• The operators need to be renormalized:

O j =
∑

q,g

ZjkO
k,ren , j = q, g

• The operator renormalization cancels the remaining infrared poles of the Wilson

coefficients (mass factorization).

TN
Fi ,p =

[
CN
Fi ,qZqp + CN

Fi ,gZgp

]
Ap,N
p,ren

• We find a renormalization group equation:

∑

k=q,g

[{
µ2 d

dµ2
+ β

}
δik − γik

]
Ci,k = 0,

with the anomalous dimensions (splitting functions)

γij =

[(
µ2 d

dµ2
Z

)
Z−1

]

ij
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Applicability of the parton picture

• We saw two pictures of the proton:

• the partonic picture of the proton at short distances

• the operator picture of the proton at short distances

• Both pictures yield the same results at twist τ = 2.

• Only the latter one can be extended consistently.
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Applicability of the parton picture

• The parton picture is valid if the interaction time of the virtual gauge boson with the

hadron τint is small compared to the life-time of individual partons τint/τlife ≪ 1.

• Approximately we have:

τint ∼
1

q0
=

4Px

Q2(1− x)
,

τlife ∼
1∑

i

(Ei − E )
=

2P∑
i

(k2
⊥,i +m2

i )/xi −M2
,

• As a model: m2
i ,M

2 = 0, k2
⊥,i = k2

⊥, x1 = x , x2 = 1− x :

τlife
τint

=
Q2(1− x)2

2k2
⊥

≫ 1

i.e. Q2 ≫ k2
⊥ and x neither close to 1 or 0 (xP ≫ 1).

• There is no parton model at low Q2, there also the light-cone expansion breaks down.
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Heavy Quark Production in DIS



Heavy Quark Production in DIS

There are two possible ways for heavy quark production in DIS:

1. Intrinsic heavy quark contributions:

• Postulate that there is a heavy quark component to the

nucleon wave function.

• Treat the heavy quark in the same way as the light quarks in

the factorization of the structure functions.

• Several experimental and theoretical studies suggest that the

intrinsic contribution is small.

• We will not discuss these contributions further.
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Heavy Quark Production in DIS

There are two possible ways for heavy quark production in DIS:

2. Extrinsic heavy quark production:

• The heavy quarks are only produced in the final state (or as

virtual states).

• The proton wave unction only contains massless quarks

(u,d ,s) and gluons (g).

⇒ This scheme is also known as the fixed flavor number

scheme (FFNS).
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Heavy Quark Production at LO

Consider F cc̄
2 (x ,Q2):

FLO
2 (x ,Q2) = e2Qas(Q

2)

1∫
ax

dy

y
H

(1)
2,g

(
x/y ,

m2
c

Q2

)
G(y ,Q2)

H
(1)
2,g

(
z ,

m2
c

Q2

)
= 8TF

{
β

[
−1

2
+ 4z(1− z) + 2

m2
Q

Q2
z(z − 1)

]
+

[
−1

2
+ z(1− z)

+ 2
m2

c

Q2
z(3z − 1) + 4

m4
c

Q4
z2
]
ln

(
1− β

1 + β

)}
Q2≫m2

c= 4TF

[(
z2 + (1− z)2

)
ln

(
Q2

m2
c

1− z

z

)
+ 8z(1− z)− 1

]
Massless Wilson coefficient:

C
(1)
2,g (z ,

Q2

µ2
) = 4TF

[(
z2 + (1− z)2

)
ln

(
Q2

µ2

1− z

z

)
+ 8z(1− z)− 1

]
We see:

H
(1)
2,g (z ,

m2
c

Q2
)

Q2≫m2
c= C

(1)
2,g (z ,

Q2

µ2
)−4TF

(
z2 + (1− z)2

)
ln

(
m2

c

µ2

)
︸ ︷︷ ︸

=A
(1)
Qg
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Heavy Quark Production in the Asymptotic Limit

The structure functions factorize

F(2,L)(x ,Q
2) =

∑

j

Cj,(2,L)

(
x ,

Q2

µ2
,
m2

µ2

)

︸ ︷︷ ︸
perturbative

⊗ fj(x , µ
2)︸ ︷︷ ︸

nonpert.

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).

We can split the Wilson coefficients into massless and heavy flavor contributions:

Cj,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
= Cj,(2,L)

(
N,

Q2

µ2

)
+ Hj,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
.

At Q2 ≫ m2 the heavy flavor part

Hj,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
=

∑
i

Ci,(2,L)

(
N,

Q2

µ2

)
Aij

(
m2

µ2
,N

)
+O

(
m2

Q2

)
[Buza, Matiounine, Smith, van Neerven (Nucl.Phys.B (1996))]

factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements

(OMEs).
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Heavy Quark Production in the Asymptotic Limit

• The partonic operator matrix elements are defined as

Aki = ⟨i |Ok | i⟩

with the same twist τ = 2 operators as before:

ONS
q,r ;µ1,...,µN

= iN−1S
[
ψ̄γµ1Dµ2 ...DµN

λr
2
ψ

]
− trace terms ,

OS
q,r ;µ1,...,µN

= iN−1S
[
ψ̄γµ1Dµ2 ...DµN

ψ
]
− trace terms ,

OS
g ,r ;µ1,...,µN

= 2iN−2S
[
F a
µ1αDµ2 ...DµN

Fα,a
µN

]
− trace terms

• Since the heavy quark provides a scale, these quantities do not vanish beyond the

tree-level.
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The heavy flavor Wilson coefficients in the asymptotic limit:

LNS
q,(2,L)(NF + 1) = a2s

[
A
(2),NS
qq,Q (NF + 1)δ2 + Ĉ

(2),NS

q,(2,L)
(NF )

]
+ a3s

[
A
(3),NS
qq,Q (NF + 1)δ2 + A

(2),NS
qq,Q (NF + 1)C

(1),NS

q,(2,L)
(NF + 1) + Ĉ

(3),NS

q,(2,L)
(NF )

]
LPS
q,(2,L)(NF + 1) = a3s

[
A
(3),PS
qq,Q (NF + 1)δ2 + NFA

(2),NS
gq,Q (NF )C̃

(1),NS

g,(2,L)
(NF + 1) + NF

ˆ̃C
(3),PS

q,(2,L)
(NF )

]
LS
g,(2,L)(NF + 1) = a2sA

(1)
gg,Q (NF + 1)NF C̃

(2)

g,(2,L)
(NF + 1) + a3s

[
A
(3)
qg,Q (NF + 1)δ2 + A

(1)
gg,Q (NF + 1)NF C̃

(2)

g,(2,L)
(NF + 1)

+ A
(2)
gg,Q (NF + 1)NF C̃

(1)

g,(2,L)
(NF + 1) + A

(1)
Qg (NF + 1)NF C̃

(2),PS

q,(2,L)
(NF + 1) + NF

ˆ̃C
(3)

g,(2,L)
(NF )

]
HPS

q,(2,L)(NF + 1) = a2s
[
A
(2),PS
Qq (NF + 1)δ2 + C̃

(2),PS

q,(2,L)
(NF + 1)

]
+ a3s

[
A
(3),PS
Qq (NF + 1)δ2 + A

(2)
gq,Q (NF + 1)C̃

(2)

g,(1,L)
(NF + 1) + A

(2),PS
Qq (NF + 1)C̃

(1),NS

q,(2,L)
(NF + 1) + C̃

(3),PS

q,(2,L)
(NF + 1)

]
HS

g,(2,L)(NF + 1) = as
[
A
(1)
Qg (NF + 1)δ2 + C̃

(1)

g,(2,L)
(NF + 1)

]
+ a2s

[
A
(2)
Qg (NF + 1)δ2 + A

(1)
Qg (NF + 1)C̃

(1)

q,(2,L)
(NF + 1) + A

(1)
gg,Q (NF + 1)C̃

(1)

g,(2,L)
(NF + 1) + C̃

(2)

g,(2,L)
(NF + 1)

]
+ a3s

[
A
(3)
Qg (NF + 1)δ2 + A

(2)
Qg (NF + 1)C̃

(1)

q,(2,L)
(NF + 1) + A

(2)
gg,Q (NF + 1)C̃

(1)

g,(2,L)
(NF + 1)

+ A
(1)
Qg (NF + 1)C̃

(2),S

q,(2,L)
(NF + 1) + A

(1)
gg,Q (NF + 1)C̃

(1)

g,(2,L)
(NF + 1) + C̃

(3)

g,(2,L)
(NF + 1)

]
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Validity of the Asymptotic Limit

• Comparison to exact O(α2
s ):

• F cc̄
2 needs Q2/m2 ≥ 10

• F cc̄
L needs Q2/m2 ≥ 1000

Q2/m2

Comparison of the asymptotic and exact two loop

contributions.
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Validity of the Asymptotic Limit

• Comparison to exact O(α2
s ):

• F cc̄
2 needs Q2/m2 ≥ 10

• F cc̄
L needs Q2/m2 ≥ 1000

• Drawbacks:

• Power corrections (m2/Q2)k , k ≥ 1

cannot be calculated.

• Only inclusive quantities can be

calculated.

Q2/m2

Comparison of the asymptotic and exact two loop

contributions.
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Validity of the Asymptotic Limit

• Comparison to exact O(α2
s ):

• F cc̄
2 needs Q2/m2 ≥ 10

• F cc̄
L needs Q2/m2 ≥ 1000

• Advatanges:

• Calculation much easier compared to full

mass dependence.

⇒ Opens up the possibility to consider

two heavy quarks.

• The massive OMEs can be used to

define a variable flavor number scheme. Q2/m2

Comparison of the asymptotic and exact two loop

contributions.
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Variable Flavor Number Scheme

• Idea: When Q2 ≫ m2 we can treat the heavy quark effectively as massless.

• Demand for the structure functions:

Fi (nf ,Q
2) + F cc̄,asymp

i (nf ,Q
2,m2) = FVFNS

i (nf + 1,Q2)

• By comparing both sides of the equation we can define new parton densities, which

become dependent on the heavy quark mass.
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Variable Flavor Number Scheme

Matching conditions for parton distribution functions:

fk(NF + 1) + fk(NF + 1) = ANS
qq,Q

(
NF + 1,

m2
1

µ2

)
·
[
fk(NF ) + fk(NF )

]
+

1

NF
APS

qq,Q

(
NF + 1,

m2
1

µ2

)
· Σ(NF )

+
1

NF
Aqg,Q

(
NF + 1,

m2
1

µ2

)
· G(NF ) ,

fQ(NF + 1) + fQ(NF + 1) = APS
Qq

(
NF + 1,

m2
1

µ2
,

)
· Σ(NF ) + AQg

(
NF + 1,

m2
1

µ2

)
· G(NF ) ,

Σ(NF + 1) =

[
ANS

qq,Q

(
NF + 1,

m2
1

µ2

)
+ APS

qq,Q

(
NF + 1,

m2
1

µ2

)
+ APS

Qq

(
NF + 1,

m2
1

µ2

)]
· Σ(NF )

+

[
Aqg,Q

(
NF + 1,

m2
1

µ2

)
+ AQg

(
NF + 1,

m2
1

µ2

)]
· G(NF ) ,

G(NF + 1) = Agq,Q

(
NF + 1,

m2
1

µ2

)
· Σ(NF ) + Agg,Q

(
NF + 1,

m2
1

µ2

)
· G(NF ) .
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Variable Flavor Number Scheme

FFNS

• Fixed order in perturbation theory and

fixed number of light partons in the

proton.

• The heavy quarks are produced

extrinsically only.

• The large logarithmic terms in the heavy

quark coefficient functions entirely

determine the charm component of the

structure function for large values of Q2.

VFNS

• Define a threshold above which the heavy

quark is treated as light, thereby obtaining

a parton density.

• Absorb mass singular terms from the

asymptotic heavy quark coefficient

functions and absorb them into parton

densities.

• Resum large logarithms involving the mass.

• Provide heavy flavor initial state parton

desities for the LHC, e.g. for cs̄ → W+.

Important:

• The VFNS is derived from the FFNS directly.

• New parton densities for the heavy quarks appear, which are now treated as light.

• Only universal (not power-supressed) terms are absorbed into the parton densities.
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Summary and Outlook



Summary

Not discussed:

• Charged Current DIS

• Polarized DIS

• Target Mass Corrections

• Parton Densities

• Semi-Inclusive DIS

• ...
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Outlook

Tomorrow:

• Higher order corrections to the massless, inclusive Wilson coefficients.

• Higher order corrections to the massive, inclusive Wilson coefficients.

• Methods for the calculation of massive operator matrix elements with one and two masses.

45



Backup



Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.

The x-space representation

1. has no (−1)N term.

2. is regular and has now contributions from distributions.

3. has a support only on x ∈ (0, 1).

For physical examples:

f̃ (N) =

1∫
0

dx xN−1
[
f (x) + (−1)Ng(x) +

(
fδ + (−1)Ngδ

)
δ(1− x)

]
+

1∫
0

dx
xN−1 − 1

1− x
,
[
f+(x) + (−1)Ng+(x)

]

All of this can be lifted, but the discussion is more involved.
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Massive Wilson Coefficients

We have to calculate the process:

q(p) + γ∗(q) → Q(k1) + Q(k2),

with q2 = −Q2, p2 = 0, k2
1 = k2

2 = m2, (p + q)2 = s = Q2(1− z)/z , β =
√
1− 4m2/s

• Parametrize the phase space:

p = s−Q2

2
√
s
(1, 0, 0, 1), k1 =

√
s
2 (1, 0, β cos θ, β sin(θ)), k2 =

√
s
2 (1, 0,−β cos θ,−β sin(θ))

∫
dPS2 =

∫
d4k1
(2π)d

∫
d4k2
(2π)d

(2π)dδ(d)(p + q − k1 − k2)(2π)
2δ(k2

1 )δ(k
2
2 )

= 24−2d π1−d/2

Γ(d/2− 1)
sd/2−2βd−3

π∫

0

dθ sind−3(θ)



Massive Wilson Coefficients – Pure-Singlet
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