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Background 1: Typical pQCD workflow For precision studies

e £,and some process containing elementary particles (the hard
interaction). Computation at some fixed-order.

e Generate all the diagrams - QGRAF, FeynArts, etc.

¢ Perform the color and Lorentz algebra to extract the scalar part
of the diagrammatic amplitudes - color, FeynCalc, tapir, etc.



Background 1: Typical pQCD workflow For precision studies
(contd.)

» Choose an optimal set of topologies (or integral-families) -
q2e/exp, tapir, FeynCalc, etc.

 Perform reduction to a set of master integrals for a set of seed
integrals in each topology - KIRA, FIRE, Reduze, LiteRed, etc.

¢ Solve these master integrals using the method of differential
equations. A "good”-choice for the basis of master integrals can
simplify solving the system of differential equations - CANONICA,
epsilon, fuchsia, INITIAL, Libra, etc.



Background 1: Typical pQCD workflow For precision studies

(contd.)

« Solving the system of differential equations requires a
knowledge of the relevant boundary-conditions. Often, an
analytic result is preferred.

» The Mellin-Barnes (MB) method is handy for performing
computations of individual scalar Feynman integrals - AMBRE,
MB, MBresolve, etc.



Background 1: Typical pQCD workflow For precision studies

(contd.)

* Limitation of the MB approach: not well-suited for handling
integrals with a large number of scales. Complexity is reflected
in the number of Mellin-Barnes variables required to represent
the given Feynman integral as an MB integral = in the
summation-fold of the nested-sums that such MB integrals
could be converted to through residue computation -
MBConicHulls'.

TAnanthanarayan et al. 2021a.



Background 2: "Hypergeometrics” in Feynman integral calcu-

lus

« Feynman integrals as a set of "generalized hypergeometric
functions”. Singularities of these functions coincide with the
Landau singularities?.

 Taking the sums of residues in the MB approach yields several
functions of the "hypergeometric” type - Appell, Lauricella,
Lauricella-Saran, etc

A given Feynman integral can be represented by
"hypergeometric” integrals, such as the Meijer G-function, or
the Fox H-function.

2Kashiwara et al. 1977; Regge 1968.



Background 3: Gel'fand, Graev, Kapranov, Zelevinsky

« Systematic and consistent generalization of the concept of
"hypergeometric” functions.

« The G(G)KZ approach can be used to solve and study classes of
integrals, such as Euler integrals3.

« First known contact with physics: arxiv.9308122%,
arxiv.9406055°.

3. Gelfand et al. 1987.
4Hosono et al. 1995a.
5Hosono et al. 1995b.


https://arxiv.org/abs/hep-th/9308122
https://arxiv.org/abs/hep-th/9406055

Idea and Questions

» Explore the scope of the GKZ approach in analysing and
evaluating individual scalar Feynman integrals.

* Possible to bypass the MB-representation? Or at least the
(multivariate) residue computation step that is typical of the
MB-approach?

* What do the solutions look like?

* Most importantly, does bypassing the residue computation
necessarily indicate a better algorithm? What are the
limitations of the GKZ approach, when compared against the
MB approach, as automated in the MBConicHulls package?



Our contribution

A proof-of-concept implementation demonstrating the utility of the
GKZ approach in evaluating individual scalar Feynman integrals in
the form of a Mathematica package FeynGKZz®.

6Ananthanarayan et al. 2022.
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Feynman integrals



The momentum representation

« Typically involve tensor structures in numerator - do tensor
reduction

* Calculate the scalar integrals
* Momentum representation:

(
der 1
/(u,o):/”,[, | (1)
r v in? [ (= + m3)y

[ number of loops

D: the space-time dimension

v = (u1,...,vp): Propagator powers

ks and gj-s are the loop-momenta and internal-momenta for
the Feynman graph I, respectively.



The Lee-Pomeransky representation

+ An alternate form”:

Ir(v, D) = r(?)(ﬁ/:o dozia;if—1 ) !

"Lee et al. 2013.



The Lee-Pomeransky representation (contd.)

¢ Generalized G-polynomial:

N n
Gla) =) z0%=) z][a (3)
acA j=1 =
z; — generic/indeterminate
¢ Generalized Feynman integral:
Ie,(v,10) = T(vo) do o~ Gy(a) ™ (4)
R?

where, vp = 2



The associated GKZ system and
its solutions



The associated GKZ system

I6,(v, 1o) satisfies a holonomic system of PDEs called a GKZ
hypergeometric system®.

Ideals
Let P = F[x, ..., X5] be some polynomial ring in Xy, ..., X, over F.

T C Pissaid to be an ideal if
c0el
e f+g9geT VfgeTl
e f-gel VfePgel

Thus, (S) =>",figi f€ P,g € Sisthe ideal spanned by S C P.

8. Gelfand et al. 1990, 1994.



The associated GKZ system (contd.)

« We describe the GKZ system as follows:
HA(Z)Z/AU<A-9+Z> (5)

A=A{a;ie{1,..,n+1},je {1, . N} a=1i=1}
V= (y0,1/1.,...,y,,)7-

* A— (n+1)x Nmatrix;n+1 <N

 Codimension of A: N—n—1

« 0= (01,...,0n)"; 0; = zi0; — Euler operators

¢ Assume: (1,...,1) lies in Q-row span of A



The associated GKZ system (contd.)

O HA(Z)/GZ(Va Vo) =0
* Is,(v,v0) — GKZ hypergeometric function!®

9Cruz 2019; Klausen 2020.



Solving the GKZ system

+ Algebraically: the SST algorithm'® — the Grébner deformation
method.

» Geometrically: the triangulation method.
e Both are equivalent!

« Basically, there exists a bijective-map b/w what are called
"square-free initial ideals” and the "unimodular regular
triangulations”

« In this talk, focus on the geometric picture.

1053ito et al. 2013.



Solving the GKZ system (contd.)

* We saw:

1 11 .1 -~
= = €Z 7
a <A> <CI1 a ... CIN) 20 ( )

« Adefines an assembly of N points (a point configuration) in Z"

Conv(A {Zkaj’keR>o,ZN:I<j:1} (8)
J=1

* Newton polytope of G(«):

Ag, :== Conv(A) (9)



Solving the GKZ system (contd.)

* Triangulate Ag,!
« Triangulation structure: T= {01, ...,0/}.
* 0; C {1,..., N} is some index set.



Solving the GKZ system (contd.)

Can always obtain a reqular triangulation!""

. M. Gelfand et al. 1991.



Solving the GKZ system (contd.)

Can always obtain a unimodular regular triangulation
(volo(ay) = "2

12Bruns et al. n.d.; Knudsen 1973.

20



Solving the GKZ system (contd.)

e Regular triangulations can be used to construct a basis for the
finite-dimensional solution space of H4(v).

 Each element: I'-series, due to a string of -functions appearing
in both the numerator and the denominator. Pingback to one
of ourinitial questions: what do the solutions look like?

e Whole solution: linear combination of the -series elements.
» Unimodularity: one o; — one l-series.

« Might as well use just the unimodular regular triangulations to
construct a basis!

21



Demonstration




Demonstration

Example 1: Bubble diagram with two unequal masses

22



Bubble diagram with two unequal masses

my, ky

my, p1 + kl

The corresponding integral in momentum-representation:

dPkq 1
in? (K5 + mi)" (—(p1 + ki) + m3)

Ir(v1,v2, D; p?) =/

with two unequal masses my and m,, and external momentum p;.

23



Bubble diagram with two unequal masses (contd.)

After successfully loading the package and installing its
dependencies, specify the integral in its momentum representation
as:

In[3]:= MomentumRep = {{ki,mi, 21}, {p1 + ki, mp,a}};
LoopMomenta = {ki};
InvariantList = {p? — —s};
Dim =4 — 2¢;
Prefactor = 1;

24



Bubble diagram with two unequal masses (contd.)

Now derive the .4-matrix:

In[4]:= FindAMatrixOut = FindAMatrix[{MomentumRep, LoopMomenta,
InvariantList,Dim,Prefactor}, UseMB — False];

Prints = The Symanzik polynomials — U=x; +xp
,F = m?x? + sx1%Xp + mix1Xo + m3X1Xo + m3x3
The Lee-Pomeransky polynomial — G =
X1 + mfxf + xo +5x1X%X0 + mfxlm + m%xlx; T mgx%

11111
The associated A—matrix — |2 1 1 0 0, which has codim=2.
010 21

Normalized Volume of the associated Newton Polytope — 3
Time Taken 1.50005 seconds

25



Bubble diagram with two unequal masses (contd.

Compute the unimodular regular triangulations'3:

In[5]:= Triangulations = FindTriangulations[FindAMatrixOut];

Prints = Finding all regular triangulations ...
Found 5 Regular Triangulations, out of which 3 are Unimodular
The 3 Unimodular Regular Triangulations —>
1 :: {{1,2,3},{2,3,4},{3,4,5}}
2 :: {{1,2,3},{2,4,5},{2,3,5}}
3 :: {{2,4,5},{1,3,5},{1,2,5}}
Time Taken 0.126965 seconds

3Rambau 2002.
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Bubble diagram with two unequal masses (contd

Calculate the -series:

In[7]:=

SeriesSolution = SeriesRepresentation[Triangulations,2];

Prints = Unimodular Triangulation — 2

Number of summation variables — 2

Non-generic limit — {2z —m?, 2 —s+mi+md, 23— 1, 22 —>m3, 2 — 1}
The series solution is the sum of following 3 terms.

Term 1 ::

(((—1)’“‘"“2 Gamma[—2 + € + a; — ny — n,] Gamma[4 — 2¢ — a; — ap + 0|

2n2 n: 2 ng
Gamma[as + 2n1 +ny] (mf)2~¢" ( L ) ( " )
(s +mf +m3)? s+m?+mg

(s+mf+ m%)’“)/((}amma[ad Gamma[4 — 2¢ — a; — a,| Gammal[as]
Gammal[1 + n;] Gamma[t +nz]))
Term 2 ::

(((—1)*“‘ ~12 Gamma[—2 + € + ap — 0y — n,] Gamma(4 — 2€ — a; — ap + ny)

Ganmales +2m -0 00 (i) (svetrm)
1 1 2

(s+mi+ mg)’a‘)/(Gamma[ad Gamma[4 — 2¢ — a; — a,] Gammal[as)
Gamma[1 + n;] Gamma[1 +n;]))
Term 3 ::

(((—1)’“L’“76amma[2 — €—ap+ny —ny| Gamma[2 — € — a; — ny +ny)

@ \m 2 \®
Gamma[-2+etaitatmtnl (mnmrs) (oerm

(s +m? +m§)”"a"a7)/((}amma[ai] Gamma[4 — 2¢ — a; — as]
Gammalaz] Gamma[1 + ny] Gamma[1 + ng]))
Time Taken 0.066558 seconds
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Bubble diagram with two unequal masses (contd.)

Check for an expression in terms of known hypergeometric
functions™:

In[8]:= GetClosedForm[SeriesSolution];

Prints = Closed form found with Olsson!
Term 1 ::
1

—— G -2
— amma[—2 + € + a1]

22 2
mymy my
H3|:ag,4*2f*31 —ag,3—€—ay, % 5 7}
? (s+m}+m3)? s +n?+n3
m (mf) ¢ (s +mf +m3) 2
Term 2 ::

—————— Gamma|—2
Gamma/[ay) al=2+ et ad
2.2 2
mimy n3
H3|laj,4—2¢—a;—a)3—€—an,—> 551>
[ v e 2’(s+m%+m§)2’s+mf+m§]
m3 (m3) €% (s +mf +m) =
Term 3 ::
m3

((Gl[—2+€+a1+a2,2—5—a1,2—€—a2,—m

2
_m
s +mf +m3

Gamma[—2 + € +a; + ag] (s +m? + m%)Q’e’a"a?) /(Gamma[al]

5 } Gamma([2 — € — a;] Gamma[2 — € — ap]

Gamma[4 — 2¢ — a; — ag) Gamma[ag]))
Time Taken 0.05827 seconds

T4Ananthanarayan et al. 2021b.
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Bubble diagram with two unequal masses (contd.)

Evaluate the sum of the '-series terms numerically:

In[9]:= SumLim = 30;
ParameterSub = {¢ — 0.001,a; — 1,a, — 1,s — 10,m; — 0.4,my — 0.3};
NumericalSum[SeriesSolution, ParameterSub, SumLim];

Prints = Numerical result = 997.382
Time Taken 0.222572 seconds

29



Demonstration

Example 2: Two-loop self-energy with four propagators

30



Two-loop self-energy with Four propagators

q,,m,

FIG. 1: The 2-loop self energy with 4 propagators.

The corresponding integral in momentum-representation:
D
Ir(v1,v2,v3, 4, D; P°) = dLquz
(irz)?
1

(=5 + m3)"1 (=g + m3)2(—(q1 + G2 + p)? + m3)¥3(—(q1 + p)? + mg)~=

with four unequal masses my, m,, ms and my, and external momentum p. 3



Two-loop self-energy with Four propagators (contd.)

GKZ-system of the 2-loop self energy with 4 propagators Citations per year

Tai-Fu Feng (Hebei U. and KLHCAQFT, Baoding and Guangxi U. and Chongaing U.), Hai-Bin Zhang (Hebei U. and !

KLHCAQFT, Baoding and Guangxi U.), Yan-Qing Dong (Hebei U. and KLHCAQFT, Baoding), Yang Zhou (Hebei U. and
KLHCAQFT, Baoding)
Sep 29, 2022

299 pages
e-Print: 2209.15194 [hep-th]
View in: ADS Abstract Service

2020 2021 2022
pdf [ cite [ reference search %) 1 citation

Abstract: (arXiv)

Applying the system of linear partial differential equations derived from Mellin-Bares representations and Miller's transformation, we present GKZ-system of Feynman integral of the 2-loop
self energy diagram with 4 propagators. The codimension of derived GKZ-system equals the number of independent dimensionless ratios among the external momentum squared and virtual
mass squared. In total 536 hypergeometric functions are obtained in neighborhoods of origin and infinity, in which 30 linearly independent hypergeometric functions whose convergent
regions have non-empty intersection constitute a fundamental solution system in a proper subset of the whole parameter space.

Note: latex, 299 pages, including 1 figure + 17 appendices. arXiv admin note: text overlap with arXiv:2206.04224

02.30.Jr | [ 11.10.6h | | 12.388x | | propagator | | Feynman graph | | differential equations | | Mellin transformation
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Two-loop self-energy with Four propagators (contd.)

What we obtain from FeynGKZ for this integral:

« A-matrix of codimension 4, thus, four summation variables.

* Trick: MB-representation informed .A-matrix'®, in contrast to
the LP-representation based one that we considered earlier.

e Numerically verified against FIESTA, for a given kinematic point.

13Feng et al. 2020.
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Two-loop self-energy with Four propagators (contd.)

Pingbacks to one of our initial questions: possible to bypass the
MB-representation? Or at least the (multivariate) residue computation
step that is typical of the MB-approach?

 Pingback to our question about bypassing the MB
representation: can be done in principle by using the LP
representation instead, considering the MB representation
often simplifies things a lot. Namely, we have the following
identity:
no. of MB integration variables
= codimension of A—matrix

= no. of I'-series summation variables

 Pingback to our question about bypassing the multivariate
residue computation step in the traditional MB approach: can
be done in the GKZ framework by considering triangulations
instead.
34



Two-loop self-energy with Four propagators (contd.)

Derive the .A-matrix:

A - matrix

=Fi ixi( L Invariantlist, Dim, Prefactor}, UseMB » True];

The Synanzik polynomials - U = xixa s X1 Xs + X2 Xs ¢ Xa Xe +Xa Xa, F = mxdxa 0 3y 03 o o 2

2 2 2,2

3103+ 3 xa X3+ S Xa Xz Xa + W] Xy X2 Xa + MG X3 X2 X+ M3 G X 4 S X1 X3 X M X1 Xa X+ MG X1 X3 X M3 Xa X3 X M3 X2 X3 X + MG Xz Xa Xa + W3 X5 X + ] Xz XG o ] X2 XE
Gem

The Lee-Pomeransky polynomfal » G = xy xa + 3 xf xs + 3 xu 3 xa xa 0 xd Ko + X2 Xa + 5 X3 X2 Xa + 0 X3 X2 Xa + 03 X1 X2 Xa + 3 X1 X2 X3+ xE xa oy o o

22l 2 2 2,2 2 2 2 2

2 202 xs e ud 2 xaxd

M3 X2 X3+ X2 Xa 5 X0 X2 Xa M3 X2 X2 Xa 1 X2 X2 X+ 3 X3 X+ X3 X4 + X3 X3 Xa + M3 X3 X5 Xa M X2 X5 Xe + 3 X2 X5 X + 3 X2 X5 X + 0 X X5 X + 3 X3 X + 0 X2 ]+ 3 ]

The Mellin-Barnes representation
((s##1-72-2325-2<-01-92-95-%4 Gamma - 21] Gamma -22] Ganma [-23] Gamna [-25] Gamma (2 - 23 - - 2, ] Ganma (2

Gamma [4 - 2122 - 25 - 2¢ - a7 - a3 - 3] Gamma (25 + a4] Ganma (-4 + 21+ 22 + 23 + 25+ 2 + 2y + 33 + 33 + &4] (md)? (md

(Gamma [, ] Gamma [a;] Gamma [4 - z1 - 22 - 2¢ - a; - 23] Gamma [a;] Gamma (6 - z1 - 22 - 23 - 25 - 3¢ - 2, - 83 - 2, - 8] Ganma (2] Gamma -2+ 21+ 22+ 25 + € + a3 + 23 + a4

Obtained an MB representation of 4 fold.

The scales of the B representation are {7, ™, T, M),
6 6 -101000000600
10 6 061000000068
010 0600100060000
110 0000106060000
“1-16 16600100000

The associated a-matrix » [ o 0 10000199002 uhich has codin -
111 100000061000
110 0000006060100
111 10000060010
“1-16 10000000001

Time Taken ©.11723 seconds

21-c-2;] Ganna[2-22 - €

23] Ganma -2+ 21422 v €+ 23+ 23

2)2 (a2)2 (2)2 (a) ) /
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Two-loop self-energy with Four propagators (contd.)

Compute the unimodular regular triangulations (results shown till
the 4! triangulation; there are 24 in total):

Finding Triangulations

Triangulations

indTriangulations[FindAMatrixout] ;
Finding all regular triangulations ...

Found 24 Regular Triangulations, out of which 24 are Unimodular.
The 24 Unimodular Regular Triangulations -

1::((1,2,3,4,5,6,8,9,10,11), (1,3,4,5,6,7,8,9,10, 11}, (1,2,3,5,6, 8,9, 10, 11, 12},

1,2,3,4,5,6,9,10,11,12), (1,3, 5,6, 7, 8, 9, 10, 11, 12)
(1,3,4,5,6,7,9,10,11, 12}, (1,2,3, 4, 5,6, 8,

9,10,13), (1,3,4,5,6,7,8,9,10, 13}, (1,2, 3,5,6, 8,9, 10, 12,13}, (1,2, 3, 4,5, 6, 9, 10, 12, 13},

1,3,5,6,7,8,9,10, 12,13}, (1,3,4,5,6,7,9, 10, 12, 13}, (1,2,3,4, 5, 6,8, 10, 11, 14}, (1, 3, 4,5, 6, 7, 8, 10, 11, 14}, (2, 3, 5, 6, 8, 9, 10, 11, 12, 14},
1,2,3,5,8,9,10,11, 12, 14}, (1,2,3, 5, 6, 8, 10, 11, 12, 14}, (1,2, 3, 4, 5, 6, 10, 11, 12, 14), (3, 5, 6, 7, 8, 9, 10, 11, 12, 14},

1,3,5,7,8,9,10, 11, 12, 14}, (1, 3,5, 6,7, 8, 10, 11, 12, 14}, (1, 3,4, 5, 6, 7, 10, 11, 12, 14}, {1, 2,3, 4, 5, 6, 8, 10, 13, 14}, (1, 3, 4, 5, 6, 7, 8, 10, 13, 14},
2,3,5,6,8,9, 10,12, 13, 14}, (1,2,3, 5, 8, 9, 10, 12, 13, 14}, (1, 2,3, 5, 6, 8, 16, 12, 13, 14}, {1, 2, 3, 4, 5, 6, 10, 12, 13, 14},

(3,5,6,7,8,9,10,12, 13, 14}, (1,3, 5,7, 8,9, 10, 12, 13, 14}, (1, 3,5, 6, 7, 8, 10, 12, 13, 14}, (1, 3, 4, 5, 6, 7, 10, 12, 13, 14}}

2:: (12, 3,5,6,8,9,10, 11,12, 14}, (1,2, 3,5, 8,9, 10, 11, 12, 14}, (3, 5, 6, 7, 8, 9, 10, 11, 12, 14}, (1,3, 5, 7, 8, 9, 10, 11, 12, 14},
2,3,5,6,8,9,10,12, 13, 14}, (1,2,3,5, 8,9, 10, 12, 13, 14}, (3, 5,6, 7, 8, 9, 10, 12, 13, 14), (1, 3, 5, 7, 8, 9, 10, 12, 13, 14},
2,3,4,5,6,7,8,9,10, 11}, {2,3,5,6,7,8,9,10, 11, 12}, (2, 3,4,5,6,7,9, 10, 11, 12}, (2, 3, 4,5, 6, 7,8, 9, 16, 13}, (2, 3,5, 6, 7, 8, 9, 10, 12, 13},
2,3,4,5,6,7,9,10, 12,13}, (2,3,4,5,6,7, 8, 10, 11, 14}, (2, 3,5, 6, 7, 8, 10, 11, 12, 14}, (2, 3, 4,5, 6, 7, 10, 11, 12, 14}, (2, 3, 4, 5, 6, 7, 8, 10, 13, 14)
2,3,5,6,7,8,10, 12, 13, 14}, (2,3, 4, 5,6, 7, 10, 12, 13, 14}, (1, 2,3, 4,5, 7, 8,9, 10, 11}, (1,2, 3,5, 7, 8,9, 16, 11, 12}, (1,2, 3,4, 5, 7, 9, 10, 11, 12},
11,2,3,4,5,7,8,9,10,13}, {1,2,3,5,7,8,9,10, 12, 13}, (1,2, 3,4,5,7,9, 10, 12, 13}, (1, 2, 3,4, 5, 7, 8, 10, 11, 14}, (1, 2,3, 5, 7, 8, 18, 11, 12, 14},
(1,2,3,4,5,7, 10,11, 12, 14}, (1, 2,3, 4,5, 7, 8, 10, 13, 14}, (1, 2,3, 5, 7, 8, 10, 12,13, 14}, (1, 2, 3, 4, 5, 7, 10, 12, 13, 14}

BECRTINe

s
6,7,9,10,11,12), (1,2,3, 4, 5,6, 8,9, 10, 13,
,6,8,10,11,14), (1,3, 4,5,6,7,8, 10, 11, 14},
5,6 14,5,6,7,8,10,13,14), (1,2,3,4,5,6, 10, 12, 13, 14},
6,8,9,10, 11,12, 14}, (1,5, 6,7, 8,9, 10, 11, 12, 14}, (1, 2, 5, 6, 8, 9, 10, 12, 13, 14},
,6,8,9,10, 11,12, 14), (1,3,6,7, 8,9, 10, 11, 12, 14), (1, 2, 3, 6, 8, 9, 10, 12, 13, 14},
5,6,9,10, 11,12, 14, (1,3, 5,6, 7,9, 10, 11, 12, 14), {1, 2, 3,5, 6, 9, 10, 12, 13, 14},
110,12, 13, 14}, (1,2,3, 5,6, 8, 9,10, 11, 14}, {1, 3,5, 6, 7, 8, 9, 10, 11, 14}, (1, 2, 3, 5, 6, 8, 9, 10, 13, 14}, (1,3, 5,6, 7, 8, 9, 10, 13, 14

18,9,10,13), (1,2,3,4,5,6,9,10,12,13}, (1,3, 4,5,6, 7,9, 16, 12, 13}, (1, 2,

3,4,5
3,4

4,5,6,8,9,10, 11}, (1,3,4,5,6,7,8,9,10, 11}, (1,2,3,4,5,6,9, 10, 11, 12}, (1, 3,4, 5,
3,4,

45

3,4,5,6,7,

2,3,4,5,6,10, 11, 12, 14}, (1,3, 4,5, 6,7, 16, 11, 12, 14}, (1, 2,3, 4, 5, 6, 8, 10, 13, 14}, (1, 3 4
1,3,4,5,6,7, 10,12, 13, 14}, (1

5,6,7,8,09,

3,6,7,8,9,

3,5,6,7,9

3,4
22, 5,
2,3
) 10,12, 13, 14}, (1, 2,3, 5,

451 ((1,2,4,5,6,8,9,10,11,13), (1,4,5,6,7,8,9,10, 11,13), (1,2,5, 6, 8,9, 10, 11, 12, 13}, (1,2, 4, 5, 6, 9, 10, 11, 12, 13}, (1,5, 6, 7, 8, 9, 10, 11, 12, 13,
(1,4,5,6,7,9, 10,11, 12, 13), (1,2, 4,5, 6, 8, 19, 11, 13, 14}, (1,4, 5, 6,7, 8, 10, 11, 13, 14), (2, 5, 6, 8, 9, 10, 11, 12, 13, 14}, (1, 2, 5, 8, 9, 10, 11, 12, 13, 14),
(1,2,5,6,8,10,11, 12,13, 14), (1,2, 4,5, 6, 10, 11, 12, 13, 14), (5, 6, 7, 8, 9, 10, 11, 12, 13, 14), (1,5, 7, 8, 9, 10, 11, 12, 13, 14),

(1,5,6,7,8,10, 11,12, 13, 14), (1,4, 5, 6,7, 10, 11, 12, 13, 14), (1,2, 3, 4,6, 8,9, 10, 11,13}, (1,3, 4,6, 7,8, 9, 10, 11, 13}, (1, 2, 3, 6, 8, 9, 10, 11, 12, 13},
1,2,3,4,6,9,10,11,12,13), (1,3,6,7,8,9, 10, 11, 12, 13}, (1,3, 4,6, 7,9, 10, 11, 12, 13}, {1, 2,3, 4, 6, 8, 16, 11, 13, 14}, (1, 3,4, 6, 7, 8, 10, 11, 13, 14},
(2,3,6,8,9,10,11,12, 13, 14}, (1,2, 3, 8,9, 10, 11, 12, 13, 14}, (1,2, 3, 6, 8, 10, 11, 12, 13, 14}, (1,2, 3,4, 6, 19, 11, 12, 13, 14},
(3,6,7,8,9,10,11,12,13, 14), (1,3, 7, 8,9, 10, 11, 12, 13, 14), (1,3, 6, 7, 8, 10, 11, 12, 13, 14), (1, 3, 4, 6, 7, 10, 11, 12, 13, 14)}

36



Two-loop self-energy with Four propagators (contd.)

Calculate the I'-series (three of the terms contributing to the full
solution for the 4" unimodular regular triangulation have been
shown here):

Finding Analytic Series

SeriesSolution = SeriesRepresentation[Triangulations, 4];
Uninodular Triangulation - 4
Number of summation variables - 4

The series solution is the sum of following 16 terms.

Term 1 i
§4°2€°91-92-93-% Gamma (2 - € - a3 - Ny ] Gamma (2 - € - 3y - Nz ] Gamma (a4 + N3] Gamma (-2 + € + Ay - Ng] GAMMA [2 - € - Az - 34 - Ny - N3 - Ng] GAMMA (32 + Ny + Ng] GAMMA [ -2+ € + 3y + 3z + 34 + Ny + Mz + Ny + Ny
W) (W™ ed ) (w20 ad )
™ (21" (2) / (Ganma (5, Gonma (23] Gamma ) Gamm (2] Ganma 1+ Gonma 1.+ ]
s [ s) s s) )
Ganma [1+ ny] Gamma [2 - ¢ - 23 - 1y - ny] GaMMma [4 - 2.¢ - 3y - 33 - 34 - Ny -1z - iy - ny] Gamma (1 + ] Gamma (33 + 34 + M Ny + na])
Term 2 i

542¢21°22°23°% Gamma (2 - € - ay - ny] Gamma a4 + nz] Gamma (-2 + € + 23 - N3] Gamma (-2 + € + a3 - Na]

I (L G (RS [ R (SR [
Ganea (24 13 - 1] Goma (2 1y + ) Gamma (34 24y <z <) |- A [- ] /
s s s s s s 4

(Gamma [ay ) Ganma (a; ] Ganna [a3] Gamna (] Gamma 1+ ny ] Ganma (1 + n2) Gamma (1 + ] Gamna (- - 4] Gamma (2 - € - ay - a4 - Ay - N - N3 - Na] Gamma 1+ Na] Gamma [2 - € + aq + na + N3 + na] )
Term 3 ::
24701792950 Gamma [2 - ¢ - ay - ] Gamma [ay + ] Gamma (-2 + € + a3 - N3] Gamma (a4 + na + N3 - Na]

B A I T
i g 3 g _m3)|™ [ md)72)

Ganma (-2 + € + a3 + 2 + 2 + 1y - 4] Gamma (2 + ny + 4] Gamma (2 - € - a4 - g + a] |- /

3 3

(Gamma (a; ] Gamma (2, ] Gammna (a3 ] Gamma (as] Gamma 1+ ny] Gamma (1 +n; ] Gamma (1 + 3] Ganma (2 - € - a3 -y - Na] Gamma (a4 +n; - Na] Ganma 1+ na] Ganma (2 - € + na] )
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Two-loop self-energy with Four propagators (contd.)

Evaluate the sum of the '-series terms numerically:

Numerical Analysis

sunLin= 15;
ParameterSub = (e »0.001, a, 41, 8,41, a3+7/8, 243 /4, M +0.1, M +5, m3 0.3, m 0.3, 5 »100);

[ser ion, , SumLim, el True] ;

Numerical result - 64.7166
Time Taken 336.624 seconds

F: L InvariantList, ParameterSub]; |
FIESTA Value - 64.7165
Tine Taken 179.623 seconds
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Summary and Future Works



 Very rich mathematical structures appear in context of
computing multiloop multiscale Feynman integrals.

* In-depth analysis of such structures might Furnish insights for
developing novel computational frameworks and algorithms
for evaluating these integrals.

e Laurent expansion of hypergeometric functions in the dim-reg
parameter ¢ - critical bottleneck in this approach. Known
automated implementations: HypExp, XSummer, also private
in-house implementations.
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* Tackle the issue of e-expansion of multivariate hypergeometric
functions'®

 Convert the standing proof-of-concept implementation into a
performance-driven one. Current performance bottlenecks
stem from an excess of dependence on Mathematica,
particularly in the numerical summation step.

 Explore the scope of FeynGKzZ in evaluating stringy canonical
forms'’

16Bera 2022, 2024; Bezuglov et al. 2023.
7He et al. 2020.
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Future Works (contd.)

 Extending studies of the analytic structure of Feynman
integrals in the GKZ Formalism'8. Why? Extracting the symbol
alphabet from the integral representation by analysing the
Landau singularities'® instead of going through the traditional
IBP-DE route could help tackle computational challenges?®

8K lausen 2020.
9Dlapa et al. 2023.
20Abreu et al. 2020.
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