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Background 1: Typical pQCD workflow for precision studies

• L, and some process containing elementary particles (the hard
interaction). Computation at some fixed-order.

• Generate all the diagrams - QGRAF, FeynArts, etc.

• Perform the color and Lorentz algebra to extract the scalar part
of the diagrammatic amplitudes - color, FeynCalc, tapir, etc.
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Background 1: Typical pQCD workflow for precision studies
(contd.)

• Choose an optimal set of topologies (or integral-families) -
q2e/exp, tapir, FeynCalc, etc.

• Perform reduction to a set of master integrals for a set of seed
integrals in each topology - KIRA, FIRE, Reduze, LiteRed, etc.

• Solve these master integrals using the method of differential
equations. A ”good”-choice for the basis of master integrals can
simplify solving the system of differential equations - CANONICA,
epsilon, fuchsia, INITIAL, Libra, etc.
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Background 1: Typical pQCD workflow for precision studies
(contd.)

• Solving the system of differential equations requires a
knowledge of the relevant boundary-conditions. Often, an
analytic result is preferred.

• The Mellin-Barnes (MB) method is handy for performing
computations of individual scalar Feynman integrals - AMBRE,
MB, MBresolve, etc.
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Background 1: Typical pQCD workflow for precision studies
(contd.)

• Limitation of the MB approach: not well-suited for handling
integrals with a large number of scales. Complexity is reflected
in the number of Mellin-Barnes variables required to represent
the given Feynman integral as an MB integral≡ in the
summation-fold of the nested-sums that such MB integrals
could be converted to through residue computation -
MBConicHulls1.

1Ananthanarayan et al. 2021a.
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Background 2: ”Hypergeometrics” in Feynman integral calcu-
lus

• Feynman integrals as a set of ”generalized hypergeometric
functions”. Singularities of these functions coincide with the
Landau singularities2.

• Taking the sums of residues in the MB approach yields several
functions of the ”hypergeometric” type - Appell, Lauricella,
Lauricella-Saran, etc

• A given Feynman integral can be represented by
”hypergeometric” integrals, such as the Meijer G-function, or
the Fox H-function.

2Kashiwara et al. 1977; Regge 1968.
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Background 3: Gel’fand, Graev, Kapranov, Zelevinsky

• Systematic and consistent generalization of the concept of
”hypergeometric” functions.

• The G(G)KZ approach can be used to solve and study classes of
integrals, such as Euler integrals3.

• First known contact with physics: arxiv.93081224,
arxiv.94060555.

3I. Gelfand et al. 1987.
4Hosono et al. 1995a.
5Hosono et al. 1995b.
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Idea and Questions

• Explore the scope of the GKZ approach in analysing and
evaluating individual scalar Feynman integrals.

• Possible to bypass the MB-representation? Or at least the
(multivariate) residue computation step that is typical of the
MB-approach?

• What do the solutions look like?

• Most importantly, does bypassing the residue computation
necessarily indicate a better algorithm? What are the
limitations of the GKZ approach, when compared against the
MB approach, as automated in the MBConicHulls package?
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Our contribution

A proof-of-concept implementation demonstrating the utility of the
GKZ approach in evaluating individual scalar Feynman integrals in
the form of aMathematica package FeynGKZ6.

6Ananthanarayan et al. 2022.
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Feynman integrals



The momentum representation

• Typically involve tensor structures in numerator - do tensor
reduction

• Calculate the scalar integrals

• Momentum representation:

IΓ(ν,D) =
∫ l∏

r=1

dDkr
iπ

D
2

1∏n
j=1(−q2j +m2

j )
νj

(1)

l: number of loops
D: the space-time dimension
ν = (ν1, ..., νn): propagator powers
kr-s and qj-s are the loop-momenta and internal-momenta for
the Feynman graph Γ, respectively.
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The Lee-Pomeransky representation

• An alternate form7:

IΓ(ν,D) =
Γ(D2 )

Γ(D2 − ω)

( n∏
i=1

∫ ∞

αi=0

dαi α
νi−1
i

Γ(νi)

)
G(α)−

d
2

=
Γ(D2 )

Γ(D2 − ω)Γ(ν)

∫
Rn

+

dααν−1G(α)−
d
2

(2)

• Lee-Pomeransky polynomial: G(α) = U(α) + F(α).

7Lee et al. 2013.
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The Lee-Pomeransky representation (contd.)

• Generalized G-polynomial:

Gz(α) =
∑
aj∈A

zjα
aj =

N∑
j=1

zj
n∏

i=1

α
aij
i (3)

zj → generic/indeterminate

• Generalized Feynman integral:

IGz(ν, ν0) = Γ(ν0)

∫
Rn

+

dααν−1Gz(α)
−ν0 (4)

where, ν0 = D
2
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The associated GKZ system and
its solutions



The associated GKZ system

IGz(ν, ν0) satisfies a holonomic system of PDEs called a GKZ
hypergeometric system8.

Ideals
Let P = F[x1, ..., xn] be some polynomial ring in x1, ..., xn over F.
I ⊂ P is said to be an ideal if

• 0 ∈ I
• f+ g ∈ I ∀ f, g ∈ I
• f · g ∈ I ∀ f ∈ P, g ∈ I

Thus, ⟨S⟩ =
∑

i figi; f ∈ P, g ∈ S is the ideal spanned by S ⊂ P.

8I. Gelfand et al. 1990, 1994.
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The associated GKZ system (contd.)

• We describe the GKZ system as follows:

HA(ν) = IA ∪ ⟨A · θ + ν⟩ (5)

A = {aij; i ∈ {1, ..., n+ 1}, j ∈ {1, ...,N}}|aij = 1; i = 1}
ν = (ν0, ν1, ..., νn)

T
(6)

• A → (n+ 1)× Nmatrix; n+ 1 ≤ N

• Codimension ofA: N− n− 1

• θ = (θ1, . . . , θN)
T; θi = zi∂i → Euler operators

• Assume: (1,...,1) lies inQ-row span ofA
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The associated GKZ system (contd.)

• HA(ν)IGz(ν, ν0) = 0

• IGz(ν, ν0) → GKZ hypergeometric function!9

9Cruz 2019; Klausen 2020.
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Solving the GKZ system

• Algebraically: the SST algorithm10 → the Gröbner deformation
method.

• Geometrically: the triangulation method.

• Both are equivalent!

• Basically, there exists a bijective-map b/w what are called
”square-free initial ideals” and the ”unimodular regular
triangulations”

• In this talk, focus on the geometric picture.

10Saito et al. 2013.
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Solving the GKZ system (contd.)

• We saw:

A =

(
1
A

)
=

(
1 1 ... 1
a1 a2 ... aN

)
∈ Z(n+1)×N

≥0 (7)

• A defines an assembly of N points (a point configuration) in Zn

Conv(A) :=
{ N∑

j=1

kjaj
∣∣∣k ∈ RN

≥0,

N∑
j=1

kj = 1
}

(8)

• Newton polytope of Gz(α):

∆Gz := Conv(A) (9)

17



Solving the GKZ system (contd.)

• Triangulate∆Gz !

• Triangulation structure: T = {σ1, ..., σr}.
• σi ⊂ {1, ...,N} is some index set.
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Solving the GKZ system (contd.)

Can always obtain a regular triangulation!11

11I. M. Gelfand et al. 1991.
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Solving the GKZ system (contd.)

Can always obtain a unimodular regular triangulation
(vol0(σi) = 1)!12

12Bruns et al. n.d.; Knudsen 1973.
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Solving the GKZ system (contd.)

• Regular triangulations can be used to construct a basis for the
finite-dimensional solution space of HA(ν).

• Each element: Γ-series, due to a string of Γ-functions appearing
in both the numerator and the denominator. Pingback to one
of our initial questions: what do the solutions look like?

• Whole solution: linear combination of the Γ-series elements.

• Unimodularity: one σi → one Γ-series.

• Might as well use just the unimodular regular triangulations to
construct a basis!
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Demonstration



Demonstration

Example 1: Bubble diagram with two unequal masses
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Bubble diagram with two unequal masses

The corresponding integral in momentum-representation:

IΓ(ν1, ν2,D; p21) =
∫

dDk1
iπ

D
2

1
(−k21 +m2

1)
ν1(−(p1 + k1)2 +m2

2)
ν2

with two unequal massesm1 andm2, and external momentum p1.
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Bubble diagram with two unequal masses (contd.)

After successfully loading the package and installing its
dependencies, specify the integral in its momentum representation
as:
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Bubble diagram with two unequal masses (contd.)

Now derive theA-matrix:
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Bubble diagram with two unequal masses (contd.)

Compute the unimodular regular triangulations13:

13Rambau 2002.
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Bubble diagram with two unequal masses (contd.)

Calculate the Γ-series:
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Bubble diagram with two unequal masses (contd.)

Check for an expression in terms of known hypergeometric
functions14:

14Ananthanarayan et al. 2021b.
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Bubble diagram with two unequal masses (contd.)

Evaluate the sum of the Γ-series terms numerically:
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Demonstration

Example 2: Two-loop self-energy with four propagators
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Two-loop self-energy with four propagators

The corresponding integral in momentum-representation:

IΓ(ν1, ν2, ν3, ν4,D; p
2) =

∫
dDq1 dDq2

(iπ
D
2 )2

×

1
(−q21 +m2

1)
ν1(−q22 +m2

2)
ν2(−(q1 + q2 + p)2 +m2

3)
ν3(−(q1 + p)2 +m2

4)
ν4

with four unequal massesm1,m2,m3 andm4, and external momentum p.
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Two-loop self-energy with four propagators (contd.)
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Two-loop self-energy with four propagators (contd.)

What we obtain from FeynGKZ for this integral:

• A-matrix of codimension 4, thus, four summation variables.

• Trick: MB-representation informedA-matrix15, in contrast to
the LP-representation based one that we considered earlier.

• Numerically verified against FIESTA, for a given kinematic point.

15Feng et al. 2020.
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Two-loop self-energy with four propagators (contd.)

Pingbacks to one of our initial questions: possible to bypass the
MB-representation? Or at least the (multivariate) residue computation
step that is typical of the MB-approach?

• Pingback to our question about bypassing the MB
representation: can be done in principle by using the LP
representation instead, considering the MB representation
often simplifies things a lot. Namely, we have the following
identity:

no. of MB integration variables

= codimension ofA−matrix

= no. of Γ-series summation variables

• Pingback to our question about bypassing the multivariate
residue computation step in the traditional MB approach: can
be done in the GKZ framework by considering triangulations
instead.
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Two-loop self-energy with four propagators (contd.)

Derive theA-matrix:
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Two-loop self-energy with four propagators (contd.)

Compute the unimodular regular triangulations (results shown till
the 4th triangulation; there are 24 in total):
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Two-loop self-energy with four propagators (contd.)

Calculate the Γ-series (three of the terms contributing to the full
solution for the 4th unimodular regular triangulation have been
shown here):
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Two-loop self-energy with four propagators (contd.)

Evaluate the sum of the Γ-series terms numerically:

38



Summary and Future Works



Summary

• Very rich mathematical structures appear in context of
computing multiloop multiscale Feynman integrals.

• In-depth analysis of such structures might furnish insights for
developing novel computational frameworks and algorithms
for evaluating these integrals.

• Laurent expansion of hypergeometric functions in the dim-reg
parameter ϵ - critical bottleneck in this approach. Known
automated implementations: HypExp, XSummer, also private
in-house implementations.
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Future Works

• Tackle the issue of ϵ-expansion of multivariate hypergeometric
functions16

• Convert the standing proof-of-concept implementation into a
performance-driven one. Current performance bottlenecks
stem from an excess of dependence onMathematica,
particularly in the numerical summation step.

• Explore the scope of FeynGKZ in evaluating stringy canonical
forms17

16Bera 2022, 2024; Bezuglov et al. 2023.
17He et al. 2020.
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Future Works (contd.)

• Extending studies of the analytic structure of Feynman
integrals in the GKZ formalism18. Why? Extracting the symbol
alphabet from the integral representation by analysing the
Landau singularities19 instead of going through the traditional
IBP-DE route could help tackle computational challenges20

18Klausen 2020.
19Dlapa et al. 2023.
20Abreu et al. 2020.
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