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Motivation :e”p — e” Hj/v.Hj

@ Higgs boson (125GeV) has been discovered at the LHC in
2012.

o Although the Higgs boson properties are compatible with SM,
we still do not have conclusive evidence of new physics.

@ Higgs production processes will help to provide the stringent
bounds on Higgs couplings and validate the Higgs mechanism.

@ pp-colliders have large amounts of QCD background; hence it
is difficult to put stringent bounds on Higgs couplings.

@ We consider Higgs boson production processes at the
proposed e~ p-colliders, in particular at LHeC for their
relatively cleaner background.
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CMS bounds !
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Figure: CMS bounds on Higgs couplings in k-framework.

'Nature 607, 60-68 (2022)
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Motivation

Colliders | CME (TeV) Processes x-section(pb)

pp 14 pp — hjj 3.7
ILC 1 ete” — ete h 0.007
ete™ = voieh 0.21

CLIC 3 ete” —ete h 0.0006
ete™ = velleh 0.5

LHeC 1.98 e p—e hj 0.05
e p — vehj 0.2

Sufficiently large cross-section as compared to e™e™ colliders.

e -energy can be varied in a range of 50 — 200 GeV with the
proton beam of 7 TeV at LHeC.

No automation for higher order correction for eP collision.

NLO QCD correction can add significant contributions to
these processes.
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Feynman diagrams :

Figure: QCD one-loop diagrams for CC and NC processes.
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Feynman diagrams :

Figure: QCD real emission diagrams for NC process.
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Coupling Order :

MB~O(gl), MY ~0(glel), MF~O0(ggl).
= | M 2~ ME 2 +2.Re[MBE.MV'], | M2~ MR

ol =0Bad) + V(a3 as) 4+ of(ad )
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Amplitude computation :

@ We compute born-level (LO and NLO) helicity amplitudes by using
spinor helicity formalism at the matrix element level.

@ We calculate virtual amplitude in t'Hooft-Veltman (HV)
regularization scheme where only the loop part has been computed
in d-dimension, and the rest part has been computed in
4-dimension.

Virtual Amplitude :

MY = ;‘Trr((fi)e)cp(’f){ _ro3 4y 00} x M

@ The phase-space integral is being done with the Monte-Carlo
package called AMCI. The package AMCI is based on the VEGAS
algorithm.

@ We use the parallel virtual machine (PVM) to compute the
phase-space integrals across the nodes.
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Renormalization

UV divergence

@ QCD does not renormalize electroweak coupling at one-loop.

@ We do not need to add any CT for the NLO QCD correction
to this process.

@ The poles in virtual amplitudes are completely IR.
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Divergence issues
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Infrared Singularity :

As gluon (massless gauge-boson) is being exchanged between two
massless quarks, the virtual diagram is collinear as well as soft
divergent.

The real emission diagrams are also IR divergent in soft and
collinear regimes.

The real emission and renormalized virtual amplitudes are both
divergent in 4-dimension, but the sum of these two is finite.

Two types of real emission sub-processes can contribute to oVt©:

1. e7q— IHjj and 2. e g — IHjj.

The final state 4-body phase-space integral is very hard to calculate
analytically. Instead, we implement a subtraction scheme, where we
can perform phase-space integral in 4-dimensional for real emission

diagrams.



Divergence issues
oeo

IR Singularity

Dipole Subtraction scheme

@ We implement the Catani-Seymour dipole subtraction scheme for IR
singularity cancellation.

@ A local counterterm (do?) is being added to virtual diagrams and
subtracted from real emission diagrams. This local counterterm has
the same pointlike behavior as real emission diagram at collinear
and soft regions.

oMo — /m+1 [daR — dO’A] Jr/m {dov — /1doA]

:/ [(dUR)ezo - (Zikaif,k)ezo] +/ {dav —dof® |
m+1 m —

e=0

@ In this process, we have quarks (antiquarks) as the initial and final
state partons.
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IR Singularity

Dipole Subtraction scheme

The insertion operator :
2

| = ;rrg”_)g)ch(“t){; + % +5— %2 +0(9)}

@ This I-term cancels all IR poles (%,1) from doV.

@ There are two dipole terms associated with each real emission
sub-process. The dipole terms are Dy’ and Dj.

@ These dipole terms exhibit the same singular behavior as do in
collinear and soft regions.

@ There is also collinear-subtraction counterterm which is the finite
remnant after leftover collinear singularities absorbed in PDF.
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Input parameters and scale

Input parameters and Scale choice

@ Input parameter:

My =80.379 GeV, [y =2.085GeV

Mz = 91.1876 GeV, [ = 2.4952 GeV
_ Saa?, a= Y262 (1 My
G, = 1.16638 x 10°GeV?, a = G My (1 /\/@)

@ We consider the following dynamical scale for PDF evolution and
running of strong coupling.

1
HR = bF = Ho = g(pT,l + /Py + Mp+ PT,j)

@ We compute the scale uncertainty by varying pg/r in between
0.5u0 < pr/F < 2po.
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x-section

Results : NC and CC

Collider Energy : E. = 140 GeV, E, =7 TeV (CME= 1.98 TeV)

Process 00 o Q’CLdO RE
e p— (fb) (fb) (%)

e Hj | 44707197 | 49.08t041% | 9.80

veHj | 214.31723% | 237.59708%% | 10.86

Here o)’ = 0% + 0V + o/ + 0P + PR Where DSR stands for dipole
subtracted real emission.

NLO _
The relative enhancement is defined as RE = (0‘7“0700> x 100.
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Differential distributions

pr and n -distributions : e p — e~
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Figure: The LO and NLO differential cross section distribution with
respect to transverse momenta (pr) and rapdity(n).
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Differential distributions

Invariant-mass distributions
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Figure: The LO and NLO differential cross section distribution with
respect to invariant masses (M;; /).
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Differential distributions

pr and n -distributions : e”p — v Hj
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Figure: The LO and NLO differential cross section distribution with
respect to transverse momentums (p7) and rapidity (7).
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Differential distributions

Invariant-mass distributions : e"p — v.Hj
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Figure: The NLO differential cross section distribution with respect to
invariant masses (M; i ).



Outlook
®000
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Anomalous HVV(V = W*, Z) coupling

Most general Lagrangian

K
mykyWIWH+ —~2 7 70 | H
g(WW” 2COSHWAM >

g — SU(2) coupling parameter
_8 }L‘_Wwﬂww—v + Qzuvz } |
my [ 2 : 4 . VWL/__ _ ﬂuaﬂ‘/
) € ap
oy (WHIW,, + h.c) + g 20",
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Anomalous HVV(V = W*, Z) coupling

Most general Lagrangian

r
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Results and discussion

Observables: | A¢ | is azimuthal correlation of two particles 1 and 2
[Agp| = 005_1(1571 P12)

Motivation: | A¢ | distribution is a good observable to distinguish CP-even and
CP-odd couplings of CC process considered in ref. [2]

Ref. [2]: Phys. Rev. Lett. 109 (2012) 261801, [1203.6285)
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Results
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e | A¢|is sensitive to individual effect of new couplings

e Deviation in distribution with respect to SM is largest for /12‘, and smallest for /1~V

2Pramod Sharma and Ambresh Shivaji, JHEP10(2020)108.
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Summary

@ We have computed the QCD NLO correction to H production with one
jet at eP collider.

@ We found the NLO QCD correction around 10% at 1.98 TeV CME.

@ We found that the invariant mass and the pr distributions are harder
with NLO corrected results.

@ |Ay| distribution is sensitive to HVV (V = W™, Z) coupling.

@ We are motivated to see the effect of effective couplings for NLO
corrected results at HVV vertex within the experimental uncertainty.
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