

NLO QCD correction to $e^-p \rightarrow e^-Hj/\nu_eHj$ processes at LHeC collider

Biswajit Das

The Institute of Mathematical Sciences, Chennai, India

in collaboration with Pramod Sharma and Ambresh Shivaji, IISER Mohali

ASWMSA, NISER, Jan 19, 2024

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00			0000	000000	0000	00

Overview

2 Diagrams

- 4 Amplitudes
- **5** Divergence issues
 - Renormalization
 - IR Singularity

6 Results

- Input parameters and scale
- x-section
- Differential distributions

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
●00	00	O	0		000000	0000	00
Motiva	ation :e	$e^- ho o e^-$	$H_j/\nu_e H$	lj			

- Higgs boson (125GeV) has been discovered at the LHC in 2012.
- Although the Higgs boson properties are compatible with SM, we still do not have conclusive evidence of new physics.
- Higgs production processes will help to provide the stringent bounds on Higgs couplings and validate the Higgs mechanism.
- *pp*-colliders have large amounts of QCD background; hence it is difficult to put stringent bounds on Higgs couplings.

<□ > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < 3/25</p>

• We consider Higgs boson production processes at the proposed *e*⁻*p*-colliders, in particular at LHeC for their relatively cleaner background.

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
○●○	00	0	0		000000	0000	00
CMS I	oounds	1					

Figure: CMS bounds on Higgs couplings in κ -framework.

¹Nature 607, 60–68 (2022)

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000							

Motivation

Colliders	CME (TeV)	Processes	x-section(pb)
рр	14	pp ightarrow hjj	3.7
ILC	1	$e^+e^- ightarrow e^+e^-h$	0.007
		$e^+e^- ightarrow u_e ar{ u}_e h$	0.21
CLIC	3	$e^+e^- ightarrow e^+e^-h$	0.0006
		$e^+e^- ightarrow u_e ar{ u}_e h$	0.5
LHeC	1.98	$e^- p ightarrow e^- h j$	0.05
		$e^- p ightarrow u_e h j$	0.2

- Sufficiently large cross-section as compared to e^+e^- colliders.
- e^- -energy can be varied in a range of 50 200 GeV with the proton beam of 7 TeV at LHeC.
- No automation for higher order correction for eP collision.
- NLO QCD correction can add significant contributions to these processes. ▲□▶▲□▶▲□▶▲□▶ □ のへで 5/25

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	●0	0	0		000000	0000	00

Feynman diagrams :

Figure: Tree-level diagrams for CC and NC processes.

Figure: QCD one-loop diagrams for CC and NC processes.

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	0●	0	0		000000	0000	00

Feynman diagrams :

Figure: QCD real emission diagrams for CC process.

Figure: QCD real emission diagrams for NC process.

Motivation 000	Diagrams 00	Coupling order •	Amplitudes 0	Divergence issues	Results 000000	Outlook 0000	Summary 00
Couplir	ng Orde	er:					

$$\begin{split} \mathcal{M}^{B} &\sim \mathcal{O}(g_{w}^{3}) \,, \quad \mathcal{M}^{V} \sim \mathcal{O}(g_{s}^{2}g_{w}^{3}) \,, \quad \mathcal{M}^{R} \sim \mathcal{O}(g_{s}g_{w}^{3}) \,. \\ \Longrightarrow &\mid \mathcal{M} \mid_{m}^{2} \sim \mid \mathcal{M}^{B} \mid^{2} + 2.Re\big[\mathcal{M}^{B} \,.\, \mathcal{M}^{V^{*}}\big] \,, \quad \mid \mathcal{M} \mid_{m+1}^{2} \sim \mid \mathcal{M}^{R} \mid^{2} \end{split}$$

$$\therefore \sigma^{T} = \sigma^{B}(\alpha_{w}^{3}) + \sigma^{V}(\alpha_{w}^{3}\alpha_{s}) + \sigma^{R}(\alpha_{w}^{3}\alpha_{s})$$

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	●		000000	0000	00
Amplit	tude co	mputatio	n ·				

- We compute born-level (LO and NLO) helicity amplitudes by using spinor helicity formalism at the matrix element level.
- We calculate virtual amplitude in t'Hooft-Veltman (HV) regularization scheme where only the loop part has been computed in *d*-dimension, and the rest part has been computed in 4-dimension.

Virtual Amplitude :

$$\mathcal{M}^{V} = \frac{\alpha_{s}}{2\pi} \cdot \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \cdot C_{F} \cdot \left(\frac{\mu^{2}}{t}\right)^{\epsilon} \cdot \left\{-\frac{1}{\epsilon^{2}} - \frac{3}{2\epsilon} - 4 + \mathcal{O}(\epsilon)\right\} \times \mathcal{M}^{B}$$

- The phase-space integral is being done with the Monte-Carlo package called AMCI. The package AMCI is based on the VEGAS algorithm.
- We use the parallel virtual machine (PVM) to compute the phase-space integrals across the nodes.

Motivation 000	Diagrams 00	Coupling order O	Amplitudes 0	Divergence issues ●○○○	Results 000000	Outlook 0000	Summary 00
Renormalizatio	'n						
UV div	vergence	е					

- QCD does not renormalize electroweak coupling at one-loop.
- We do not need to add any CT for the NLO QCD correction to this process.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 10/25

• The poles in virtual amplitudes are completely IR.

Motivation 000	Diagrams 00	Coupling order 0	Amplitudes 0	Divergence issues ○●00	Results 000000	Outlook 0000	Summary 00
IR Singularity							
Infrare	d Singı	ularity :					

- As gluon (massless gauge-boson) is being exchanged between two massless quarks, the virtual diagram is collinear as well as soft divergent.
- The real emission diagrams are also IR divergent in soft and collinear regimes.
- The real emission and renormalized virtual amplitudes are both divergent in 4-dimension, but the sum of these two is finite.
- Two types of real emission sub-processes can contribute to σ^{NLO} : 1. $e^-q \rightarrow IHjj$ and 2. $e^-g \rightarrow IHjj$.
- The final state 4-body phase-space integral is very hard to calculate analytically. Instead, we implement a subtraction scheme, where we can perform phase-space integral in 4-dimensional for real emission diagrams.

Motivation 000	Diagrams 00	Coupling order 0	Amplitudes 0	Divergence issues ○○●○	Results 000000	Outlook 0000	Summary 00
IR Singularity							
Dipole	Subtr	action sch	neme				

- We implement the Catani-Seymour dipole subtraction scheme for IR singularity cancellation.
- A local counterterm $(d\sigma^A)$ is being added to virtual diagrams and subtracted from real emission diagrams. This local counterterm has the same pointlike behavior as real emission diagram at collinear and soft regions.

$$\sigma^{NLO} = \int_{m+1} \left[d\sigma^{R} - d\sigma^{A} \right] + \int_{m} \left[d\sigma^{V} - \int_{1} d\sigma^{A} \right]$$
$$= \int_{m+1} \left[\left(d\sigma^{R} \right)_{\epsilon=0} - \left(\Sigma_{ijk} \mathcal{D}_{ij,k} \right)_{\epsilon=0} \right] + \int_{m} \left[d\sigma^{V} - d\sigma^{B} \otimes I \right]_{\epsilon=0}$$

• In this process, we have quarks (antiquarks) as the initial and final state partons.

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0	○○○●	000000	0000	00
IR Singularity							

Dipole Subtraction scheme

The insertion operator :

$$I = \frac{\alpha_s}{2\pi} \cdot \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \cdot 2C_F \cdot \left(\frac{\mu^2}{t}\right)^{\epsilon} \cdot \left\{\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} + 5 - \frac{\pi^2}{2} + \mathcal{O}(\epsilon)\right\}$$

- This I-term cancels all IR poles $(\frac{1}{\epsilon^2}, \frac{1}{\epsilon})$ from $d\sigma^V$.
- There are two dipole terms associated with each real emission sub-process. The dipole terms are \mathcal{D}_k^{ai} and \mathcal{D}_{ii}^a .
- These dipole terms exhibit the same singular behavior as $d\sigma^R$ in collinear and soft regions.
- There is also collinear-subtraction counterterm which is the finite remnant after leftover collinear singularities absorbed in PDF.

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
					00000		
Input parameter	rs and scale						

Input parameters and Scale choice

Input parameter:

$$\begin{split} {\rm M}_W &= 80.379~{\rm GeV}, \quad \Gamma_W = 2.085 {\rm GeV} \\ {\rm M}_Z &= 91.1876~{\rm GeV}, \quad \Gamma_Z = 2.4952~{\rm GeV} \\ \mathcal{G}_\mu &= 1.16638 \times 10^{-5} {\rm GeV}^2, \quad \alpha = \frac{\sqrt{2}}{\pi} \mathcal{G}_\mu \mathcal{M}_W^2 \Big(1 - \frac{\mathcal{M}_W^2}{\mathcal{M}_Z^2} \Big) \end{split}$$

 We consider the following dynamical scale for PDF evolution and running of strong coupling.

$$\mu_{R} = \mu_{F} = \mu_{0} = \frac{1}{3} \left(p_{T,I} + \sqrt{p_{T,H}^{2} + M_{H}^{2}} + p_{T,j} \right)$$

• We compute the scale uncertainty by varying $\mu_{R/F}$ in between $0.5\mu_0 \leq \mu_{R/F} \leq 2\mu_0$.

Motivation 000	Diagrams 00	Coupling order 0	Amplitudes 0	Divergence issues	Results ○●○○○○	Outlook 0000	Summary 00
x-section							
Result	s : NC	and CC					

Collider Energy : $E_e = 140$ GeV, $E_p = 7$ TeV (CME= 1.98 TeV)

Process	σ_0	σ_{acd}^{NLO}	RE
$e^- p ightarrow$	(fb)	(fb)	(%)
e−Hj	$44.70^{+1.97\%}_{-1.86\%}$	49.08 ^{+0.41%} -0.53%	9.80
ν _e Hj	$214.31^{+2.30\%}_{-2.13\%}$	237.59 ^{+0.89%} -0.72%	10.86

Here $\sigma_{qcd}^{NLO} = \sigma^0 + \sigma^V + \sigma^I + \sigma^{PK} + \sigma^{DSR}$. Where DSR stands for dipole subtracted real emission.

The relative enhancement is defined as $RE = \left(\frac{\sigma_{qcd}^{NLO} - \sigma_0}{\sigma_0}\right) \times 100.$

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		○○●000	0000	00
Differential dist	tributions						

p_T and η -distributions : $e^-p \rightarrow e^-Hj$

Figure: The LO and NLO differential cross section distribution with respect to transverse momenta (p_T) and rapdity (η) .

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		○○○●○○	0000	00
Differential dis	stributions						

Invariant-mass distributions : $e^-p \rightarrow e^-Hj$

Figure: The LO and NLO differential cross section distribution with respect to invariant masses $(M_{ij/ijk})$.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 - のへで 17/25

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		○○○○●○	0000	00
Differential dis	tributions						

p_T and η -distributions : $e^- p \rightarrow \nu_e H j$

Figure: The LO and NLO differential cross section distribution with respect to transverse momentums (p_T) and rapidity (η).

Invariant-mass distributions : $e^- p \rightarrow \nu_e H j$

Figure: The NLO differential cross section distribution with respect to invariant masses $(M_{ij/ijk})$.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ○ 19/25

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	O	0		000000	●000	00
Outloo	k						

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

Most general Lagrangian

$$\begin{split} g\left(m_{W}\kappa_{W}W_{\mu}^{+}W^{-\mu} + \frac{\kappa_{Z}}{2\cos\theta_{W}}m_{Z}Z_{\mu}Z^{\mu}\right)H & g \to SU(2) \text{ coupling parameter} \\ & -\frac{g}{m_{W}}\left[\frac{\lambda_{1W}}{2}W^{+\mu\nu}W_{\mu\nu}^{-} + \frac{\lambda_{1Z}}{4}Z^{\mu\nu}Z_{\mu\nu} & \tilde{V}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}V_{\alpha\beta} \\ & +\lambda_{2W}(W^{+\nu}\partial^{\mu}W_{\mu\nu}^{-} + h.c.) + \lambda_{2Z}Z^{\nu}\partial^{\mu}Z_{\mu\nu} & V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} \\ & +\frac{\tilde{\lambda}_{W}}{2}W^{+\mu\nu}\widetilde{W}_{\mu\nu}^{-} + \frac{\tilde{\lambda}_{Z}}{4}Z^{\mu\nu}\widetilde{Z}_{\mu\nu}\right]H & V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} \end{split}$$

<□▶ < □▶ < ■▶ < ■▶ < ■▶ = りへで 20/25

Motivation 000	Diagrams 00	Coupling order 0	Amplitudes 0	Divergence issues	Results 000000	Outlook 0●00	Summary 00
Outloo	k						

Anomalous $HVV(V = W^{\pm}, Z)$ coupling

Most general Lagrangian

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		000000	00●0	00
Outloc	ok						

Results and discussion

Observables: $|\Delta \phi|$ is azimuthal correlation of two particles 1 and 2

$$|\Delta \phi| = cos^{-1}(\hat{p}_{T1}, \hat{p}_{T2})$$

Motivation: $|\Delta \phi|$ distribution is a good observable to distinguish CP-even and CP-odd couplings of CC process considered in ref. [2]

Ref. [2]: Phys. Rev. Lett. 109 (2012) 261801, [1203.6285]

<□ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q @ 22/25

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		000000	000●	00
Outloc	k^2						

Results

- $|\Delta \phi|$ is sensitive to individual effect of new couplings
- Deviation in distribution with respect to SM is largest for λ_{2V} and smallest for $\widetilde{\lambda_V}$

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		000000	0000	●©
Summ	ary						

- We have computed the QCD NLO correction to *H* production with one jet at eP collider.
- We found the NLO QCD correction around 10% at 1.98 TeV CME.
- We found that the invariant mass and the *p*_T distributions are harder with NLO corrected results.
- $|\Delta_{\phi}|$ distribution is sensitive to *HVV* ($V = W^{\pm}, Z$) coupling.
- We are motivated to see the effect of effective couplings for NLO corrected results at *HVV* vertex within the experimental uncertainty.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 24/25

Motivation	Diagrams	Coupling order	Amplitudes	Divergence issues	Results	Outlook	Summary
000	00	0	0		000000	0000	○●

Thank You

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 25/25