
Second Order Master Integrals to SIDIS

Vaibhav Pathak

IMSc

Collaborators: Saurav Goyal, V Ravindran, Narayan Rana, Sven-Olaf Moch, Roman Lee,
Taushif Ahmed

Advance School & Workshop on Multiloop Scattering Amplitudes,
NISER

January 19, 2024

Vaibhav Pathak Second order Master Integrals to SIDIS Slide 1 of 28



Outline of the talk

• Introduction

• Processes relevant to our Cross-section at NNLO

• Calculation of Diagrams

• Calculation of Master Integrals

• Master Integrals

• Conclusions and Future directions

Vaibhav Pathak Second order Master Integrals to SIDIS Slide 2 of 28



Introduction
Processes with identified final state hadrons play important roles in
QCD. They provide crucial information on the splitting function and
fragmentation function.

Hadron production serves as a powerful probe of nucleon or nuclear
structure.
Hadron production data tests our key concepts in QCD at high
energies such as factorization, universality of splitting functions, and
perturbative calculations.
The Full NNLO calculation for semi-inclusive DIS will provide a
significant result that will be helpful for the theoretical framework for
precision studies of observables relevant to the Electron-Ion
Collider(EIC).
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Theoretical preliminaries

We consider the semi-inclusive deep inelastic scattering process

h(P1) + l(k) −→ l′(k′) + h′(P2) +X

On the Partonic level cross-section, we are considering processes like

q/g(Pa) + γ∗(q) −→ q/g(Pb) +X

where P 2
a = P 2

b =0 and q2 =-Q2. Our Kinematic variables are
x = Q2

2P1.q
⇒ x′ = Q2

2Pa.q
and z = P1.P2

P1.q
⇒ z′ = Pa.Pb

Pa.q
.
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Since Hadron is a composite particle, the computation of the hadronic
part of the process is less straightforward which means we can’t say
much about hadronic tensor Wµν .

By imposing constraints on Wµν , like Lorentz covariance and gauge
invariance, One can parametrize Wµν as,

Wµν =W1

(
−gµν +

qµqν
q2

)
+

W2

P1.q

(
P1µ −

P1.q

q2
qµ

)(
P1ν −

P1.q

q2
qν

)
where W1 and W2 are called DIS structure functions.
One can express Hadronic tensor into Partonic tensor by,

Wµν =

∫
dx1f̂a(x1)

∫
dz1D̂b(z1)[wµν

(
x

x1
,
z

z1

)
]

where f̂a is Parton distribution function and D̂b is fragmentation
function.
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The Above equation can be written as

Wµν =

∫
dx1f̂a(x1)

∫
dz1D̂b(z1)[(w1T

µν
1 + w2x1T

µν
2 )

(
x

x1
,
z

z1

)
]

Wµν =W1T
µν
1 +W2T

µν
2

where Tµν1 =

(
−gµν + qµqν

q2

)
and

Tµν2 = 1
P1.q

(
P1µ − P1.q

q2
qµ

)(
P1ν − P1.q

q2
qν

)
.

One can calculate W1 and W2 by projecting out, W2 = Pµν2 Wµν and
W1 = Pµν1 Wµν .
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The Differential cross-section of the SIDIS can be expressed as

1

xz

dW1

dz
=

∫ 1

x

dx1
x1

(f̂a(x1))

∫ 1

z

dz1
z1

(D̂b(z1)

z1

){ 1

x′z′

dσ̂
(j)

wab
1

dz′
}

1

xz

dW2

dz
=

∫ 1

x

dx1
x1

(x1f̂a(x1))

∫ 1

z

dz1
z1

(D̂b(z1)

z1

){ 1

x′z′

dσ̂
(j)

wab
2

dz′
}

1

x′z′

dσ̂wab
i

dz′
=

∞∑
j=0

ajs(µ
2
R)

(
1

x′z′

dσ̂
(j)

wab
i

dz′

)
where i = 1, 2 and we are only considering up to NNLO. so j = 0, 1, 2
for LO, NLO, and NNLO respectively.
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Processes relevant to our Cross-section at NNLO
At NNLO order, we have pure virtual (VV),real-virtual (RV), and
double real (RR) emissions.

Here are the relevant diagrams for our processes
VV diagrams q + γ∗ ⇒ q(h),

RV diagrams q + γ∗ ⇒ q(h) + g,
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q + γ∗ ⇒ q(h) + g + g, q + γ∗ ⇒ q(h) + q + q̄,
q + γ∗ ⇒ q(h) + b+ b̄, g + γ∗ ⇒ g(h) + q + q̄.
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Calculation of Diagrams
We start computation by generating the set of Feynmann diagrams by
using QGRAF to get expression in symbolic form.

To apply the Feynmann rules, perform SU(nc) color manipulation and
d-dimensional Lorentz and spin algebra, we pass the resulting
expression through various procedures based on FORM and
Mathematica.
Using Reduze package, we find appropriate loop momentum shifts for
each Feynmann diagrams beyond tree level to classify them in one of
the integral families.
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Before doing these routine procedures, We need to calculate phase
space integrals using Reverse-Unitarity, where we will change all the
delta functions into propagators. δ(p2 −m2) → i

p2−m2 − c.c.
leave

The resulting expression contains Feynmann loop integrals which are
reduced to a set of master integrals through IBP identities with the
help of LiteRed Package.
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Calculation of Master Integrals
At NNLO order we have VV, VV1L, RV, and RR processes.

For the calculation of VV (Form Factor), we have introduced 2
families and got 5 MIs.Results for these 5 MIs are known through
Neervan’s paper.

For the RV process, We have 2-pt, 3-pt, and 4-pt function diagrams.
we introduced 3 families and got 7 MIs using LiteRed.One can derive
results of these MIs by some variable manipulation of results of MIs of
the DIS process.
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Double real emission
For RR process, we have many processes such as
q + γ∗ ⇒ q + g + g, q + γ∗ ⇒ q + q + q̄,
q + γ∗ ⇒ q + b+ b̄, g + γ∗ ⇒ g + q + q̄
Any of these final state partons can hadronize.

List of Propagators for RR process,
Pr1 = 1

(k1−p1)2 , Pr2 = 1
(k1−q)2 , Pr3 = 1

(k2−p1)2

Pr4 = 1
(k2−q)2 , Pr5 = 1

(k1−p1−q)2 , Pr6 = 1
(k2−p1−q)2

Pr7 = 1
(k1+k2)2

, Pr8 = 1
(k1+k2−p1)2

• Below are the cut propagators.Except CPr4, all other cut
propagators are coming from phase space delta functions . CPr4 is
coming due to constraint delta function δ(z′ − p1.p2

p1.q
).

CPr1 = 1
(k1)2

, CPr2 = 1
(k2)2

, CPr3 = 1
(k1+k2−p1−q)2

CPr4 = (zp−1)∗(p1.q)+(k1.p1)+(k2.p1)
(p1.q)
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Master Integrals -:

j[A01,1,1,1,1,0,0,0],j[A01,1,1,1,1,0,0,1],j[A01,1,1,1,1,1,1,1],

j[A02,1,1,1,1,1,1,1],j[A03,1,1,1,1,0,0,1],j[A03,1,1,1,1,1,1,1],

j[A05,1,1,1,1,1,1,1],j[A06,1,1,1,1,0,0,1],j[A06,1,1,1,1,0,0,2],

j[A06,1,1,1,1,0,1,1],j[A06,1,1,1,1,1,1,1],j[A07,1,1,1,1,1,1,1],

j[A08,1,1,1,1,0,1,1],j[A08,1,1,1,1,1,1,1],j[A09,1,1,1,1,0,1,1],

j[A09,1,1,1,1,1,1,1],j[A10,1,1,1,1,1,1,1],j[A12,1,1,1,1,1,1,1],

j[A13,1,1,1,1,1,1,1],j[A14,1,1,1,1,1,1,1],j[A15,1,1,1,1,1,1,1]
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To solve all RR processes we have introduced 15 families and doing
IBP reduction we got 21 new MIs. We have solved these MIs using 2
different methods.

(i) Conventional method of brute force by choosing the appropriate
frame of reference.
(ii) Differential equation method by calculating explicit Boundary
conditions.

Method (i)

We choose a suitable frame of Outgoing partons that are not tagged
(k1 − k2 parton frame).
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While calculating explicit phase space integrals, we encountered a
constraint delta function δ(z′ − p1.p2

p1.q
), because we tagging an

outgoing parton with momenta p2.

We have only
∫ π
0 dθ

∫ π
0 dϕ

(sin θ)D−3(sinϕ)D−4

(a+b cos θ)(A+B cos θ+C cosϕ sin θ) as angular
integration.

In the first 7 Integrals, a = b and A2 = B2 + C2. That’s why we
could solve these MIs using Brute force.∫ π

0
dθ

∫ π

0
dϕ

(sin θ)D−3(sinϕ)D−4

(1− cos θ)i(1− cosψ cos θ − sinψ cosϕ sin θ)j

= 2(1−i−j)πΓ(D
2
−1−j)Γ(D

2
−1−i)

Γ(D−2−i−j)
Γ(D−3)

Γ(D
2
−1)2

F (i, j, D2 − 1; cos2 ψ2 )
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For remaining MIs where a ̸= b and A ̸= B2 + C2, we can’t calculate
these MIs explicitly.
There are 2 ways to calculate MIs with the Differential equation
method,
Method (iia)

By using the same set of parametrization, we set linear differential
equation system w.r.t both the kinematic variable in the form

d
−→
J

dx′
=Mx′(x

′, z′, ϵ)
−→
J

d
−→
J

dz′
=Mz′(x

′, z′, ϵ)
−→
J

, where Mx′ and Mz′ are 21 x 21 lower triangular matrix.
Next, we calculated boundary conditions for these 21 Integrals
explicitly and after solving these Integrals iteratively got full results for
21 MIs.
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Method (iib)
After setting up the differential system as we did for the previous
method, we followed some systematic steps.

First , we need to check the completeness of Master Integrals basis.
To see this, These integrals should satisfy
"Integrability condition".

∂Mx′(x
′, z′, ϵ)

∂z′
− ∂Mz′(x

′, z′, ϵ)

∂x′
+ [Mx′ ,Mz′ ] = 0

We used the Libra package, We went to canonical basis, where our
differential system

became
d
−→
J

dx′
=Mx′(x

′, z′, ϵ)
−→
J ⇒ d

−→
J̃

dx′
= ϵM̃x′(x

′, z′)
−→
J̃

into ϵ-form. where M̃x′ = T−1
(
Mx′T − dT

dx′
)
.
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After getting ϵ-form Matrix, we did path-ordered integrations.

dJ̃ = ϵ(Âxdx+ Âzdz)J̃ .

J̃(x, z) = P exp
{
ϵ
∫ x,z
x0,z0

(Âxdx+ Âzdz)
}
J̃0(x0, z0).

path ordered diagram, we did line integration on this path

We have calculated explicitly boundary conditions and expanded above
order by order in ϵ and solved all the MIs iteratively.
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We get Ji(x′, z′) = Fi(x
′, z′, x0 = 0, z0 = 0) = Fi(x

′, z′, {Ji(0, 0)}),
since we are taking our starting point of path ordered integration is
(x0 = 0, z0 = 0).

since Ji(0, 0)’s are unknown, we first solve for
Ji(1, 1) = Fi(1, 1, {Ji(0, 0)} = Bi).

To compute Ji(1, 1), we calculated all the MIs in (x′ → 1, z′ → 1)
limit in (k1 − k2) frame.
After getting all the constants, we solved the full result
Ji(x

′, z′) = Fi(x
′, z′, {Bi}).
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We got some Alphabets as arguments of iterative generalised PolyLog

x′, (1− x′), (1 + x′), z′, (1− z′) ,

ri=
(x′)1/2, (z′)1/2, (z′ − x′), (z′ + x′), (1 + x′z′),

((1− z′)2 + 4x′z′)1/2, ((1 + x′)2 − 4x′z′)1/2 ,

(1− z′)2 + 4x′z′, (1 + x′)2 − 4x′z′ .

we defined our set of GPL’s can be written as

G(r1, r2, r3, λ) =

∫ λ

0

dλ1
r1(λ1)

∫ λ1

0

dλ2
r2(λ2)

∫ λ2

0

dλ3
r3(λ3)

We solved these GPL’s numerically.
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M̃x′(x
′, z′)

ep

-1+xp xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
ep

-1+xp xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
ep

-1+xp xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
ep

-1+xp xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-
2 ep

xp
0 0 0 -

ep

2 xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-
16ep

-1+xp

ep -1+zp

-1+xp -xp+zp
0 0 -

4 ep

xp-zp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16ep

xp-xp2

ep -1+zp

-1+xp xp-zp
0 0

4 epzp

xp2-xpzp
0 -

ep

xp
0 0 0 0 0 0 0 0 0 0 0 0 0

8 ep

xp-xp2

ep 1+xp

4 -1+xp xp
0 0 0 0 0 -

ep

2 xp
0 0 0 0 0 0 0 0 0 0 0 0

4 ep

-1+xp xp

ep

4-4 xp
0 0 0 0 0 0 -

ep

2 xp
0 0 0 0 0 0 0 0 0 0 0

8 ep -1+xp -1+zp zp

xp xp+zp+xp2 zp+xpzp2
-

ep zp

xp xp+zp
0 0 0 0 0

ep -1+xp -1+zp zp

xp xp+zp+xp2 zp+xpzp2
0 -

ep xp+2 zp+xpzp2

2 xp xp+zp+xp2 zp+xpzp2
0 0 0 0 0 0 0 0 0 0

-
16ep xp+2 zp+xpzp2
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16ep -1+zp

-1+xp xp-zp
-

ep -2+xp+zp

-1+xp xp-zp
0 0 0 0 0
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4 ep -1+xp -1-xp2+xp -2+4 zp

xp 1+xp2+xp 2-4 zp
-
ep 1+3 xp -1-xp2+xp -2+4 zp
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-
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xp
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2 epzp

xp2-xpzp
0 0 0 0 0 0 0 0 -

ep

xp
0 0 0

16ep -1+zp2

xp+zp+xp2 zp+xpzp2

ep xp2+zp-3 xp 1+zp

2 -1+xp xp xp+zp
0 0 0 0 0

ep zp+xp2 zp+xp -1+3 zp2

xp xp+zp+xp2 zp+xpzp2

2 ep

xp

ep 1+xp zp 1+zp

xp xp+zp+xp2 zp+xpzp2
0 0 0 0 -

ep 1+zp

-1+xp 1+-2+4 xp zp+zp2
0 0

ep

-1+xp xp
0 0

16epzp

xp2-xpzp
-
ep xp+zp

xp xp-zp
0 0 0 0 0

2 epzp

xp2-xpzp
-
2 ep

xp
0 0 0 0 0 0 0 0 0

ep

-1+xp xp
0

0
ep

xp-zp
0 0

4 ep

xp-zp
0 0 -

2 ep

xp
-
2 ep

xp
0 0 0 -

2 ep 1+xp -1-xp2+xp -2+4 zp

xp 1+xp2+xp 2-4 zp
0 0 0 0 0 0

ep

-1+xp xp
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T (x′, z′)

-
-1+xp -1+zp

xp
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
1+ep2

4 ep2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -
1+ep2 xp2

4 ep2 -1+xp zp
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0 0 0
1+ep2 xp2
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0 0 0 0
1+ep
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-

1+ep2

ep2
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2 1+ep2 -1+zp

zp

1+ep2 xp-zp

8 zp
0 0 0 0 0

1

4
(1 + ep)2 (1 + xp)

1+ep2 1+xp 1+zp

4 zp
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1+ep2 xp

4 ep2 zp
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
1+ep2 xp2
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1+ep2 xp
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0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1+ep2 xp
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4 ep2 zp
0 0 0 0
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1+ep2 xp2
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Conclusions and Future directions
we have all MIs required for full calculation of SIDIS at NNLO order.

We have matched our MIs results by both differential equation
methods.
We are going to do Mass factorization of our processes then we will
have full results for SIDIS at NNLO.
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Thank You !!!
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UV and IR divergences
Amplitude beyond LO has UV divergences. To cure this divergence,
we need to first renormalize strong coupling constant through

âsSϵ

(
1

µ2

)ϵ/2
= as(µ

2
R)

(
1

µ2R

)ϵ/2
Za(µ

2
R)

where Za(µ2R) = 1 + as
(2β0
ϵ

)
+ a2s

(4β2
0

ϵ2
+ β1

ϵ

)
+O(a3s).

The Kinoshita-Lee-Nauenberg(KLN) theorem states that all the
infrared singularities (soft and collinear) singularities get canceled
provided over both ’initial’ and ’final’ states.
we have

1 + as(SoftV + CollinearVp1 + CollinearVp2 + FiniteV )+

as(SoftR + CollinearRp1
+ CollinearRp2

+ FiniteR) + a2s(...) + ...

SoftV + SoftR = 0;
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Since we are not integrating over the initial hadron and final hadron,
we still have collinear singularities.

CollinearVp1 + CollinearVp2 + CollinearRp1
+ CollinearRp2

̸= 0;

Our cross-section can be expressed as

σ̂NNLO =σ̂(0) + asσ̂
(1) + a2sσ̂

(2) + ... =

σ̂(0) + as(σ̂
(1)
div + σ̂

(1)
fin) + a2s(σ̂

(2)
div + σ̂

(2)
fin) + ...;

We will still have 1
ϵ2

and 1
ϵ poles in the cross-section which are coming

due to initial state singularity. We will remove this singularity by
"Mass Factorisation" prescription.
By using Mass factorization we can factorize our remaining singularity
⇒ σ̂NNLO = Γ⊗△⊗ Γ̃.
Divergences coming in Γ and Γ̃ will be totally absorbed in Splitting
function f̂a and Framentation function D̂b respectively .
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function f̂a and Framentation function D̂b respectively .
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At NNLO level, one can solve and find out that(
1

µ2F

)ϵ
△̂(2)
qq +

2β0
ϵ

(
1

µ2F

)ϵ/2
△̂(1)
qq =δ(1− x′)⊗△(2)

qq ⊗ 1

z′
δ(1− z′)

+δ(1− x′)⊗△(1)
qb′ ⊗

1

z′
Γ̃
(1)
ab′

+δ(1− x′)⊗△(0)
qq ⊗ 1

z′
Γ̃(2)
qq

+Γ
(1)
a′q ⊗△(0)

a′b′ ⊗
1

z′
Γ̃
(1)
qb′

+Γ
(1)
a′q ⊗△(1)

a′q ⊗
1

z′
δ(1− z′)

+Γ(2)
qq ⊗△(0)

qq ⊗ 1

z′
δ(1− z′).

After doing Mass factorization, we removed all the poles and got finite
cross-section .

Vaibhav Pathak Second order Master Integrals to SIDIS Slide 28 of 28



At NNLO level, one can solve and find out that(
1

µ2F

)ϵ
△̂(2)
qq +

2β0
ϵ

(
1

µ2F

)ϵ/2
△̂(1)
qq =δ(1− x′)⊗△(2)

qq ⊗ 1

z′
δ(1− z′)

+δ(1− x′)⊗△(1)
qb′ ⊗

1

z′
Γ̃
(1)
ab′

+δ(1− x′)⊗△(0)
qq ⊗ 1

z′
Γ̃(2)
qq

+Γ
(1)
a′q ⊗△(0)

a′b′ ⊗
1

z′
Γ̃
(1)
qb′

+Γ
(1)
a′q ⊗△(1)

a′q ⊗
1

z′
δ(1− z′)

+Γ(2)
qq ⊗△(0)

qq ⊗ 1

z′
δ(1− z′).

After doing Mass factorization, we removed all the poles and got finite
cross-section .

Vaibhav Pathak Second order Master Integrals to SIDIS Slide 28 of 28


