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Semi-inclusive DIS

DIS: l(kl) + H(P) → l(k ′l) + X

SIDIS: l(kl) + H(P) → l(k ′l) + H ′(PH) + X ′

In DIS, only the scattered lepton is detected while the remnants of
the shattered nucleon are ignored i.e inclusive.

In SIDIS, in addition to the scattered lepton one of the final-state
hadron is also detected.

In inclusive DIS, if one of the hadron is tagged with a specific
momenta we get SIDIS i.e. with extra constrain on the phase space of
out going particles.
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Motivation

Semi Inclusive Deep Inelastic Scattering (SIDIS) helps to study
hadron structure and hadron fragmentation phenomena.

With increase in experimental precision, one demands precise
calculation from theoretical side as well.

Till date there is no explicit calculation on full next-to-next-to leading
order (NNLO) QCD correction to SIDIS process1, however results in
threshold limit are known2.

We calculated NNLO corrections in QCD strong coupling constant for
SIDIS process using Feynman diagrammatic approach.

Precision measurement of this process can have great impact on
determination of various hadronic observables at upcoming EIC3.

1 NLO by Alteralli et.al. in 1979 3 I. Borsa et.al.{arXiv:1902.10663}
2 W. Vogelsang et.al.{arXiv:2109.00847}
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Semi-inclusive DIS

DIS: l(kl) + H(P) → l(k ′l) + X

SIDIS: l(kl) + H(P) → l(k ′l) + H ′(PH) + X ′

In inclusive DIS, if one of the hadron is tagged with a specific
momenta we get SIDIS i.e. with extra constrain on the phase space of
out going particles.

We have calculated NNLO corrections in QCD to differential SIDIS
hadronic cross section.

We consider photon(γ∗) as the mediator of interaction between
lepton and the hadron.
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Hadronic Cross section

Differential Hadronic cross section for
e−(kl) + H(P) → e−(k

′
l ) + H ′(PH) + X ′ is written as,

d2σe−H

dE ′l dΩdz
=

E ′l
El

α2
e

Q4
Lµν(kl , k

′
l , q)Wµν(q,P,PH).

Using the property of Lorentz invariance, current conservation and
symmetry properties (like parity), Wµν tensor can be parametrized in
terms of structure functions F1 and F2.

W µν = F1
[
− gµν +

qµqν

q2

]
︸ ︷︷ ︸

Tµν
1

+ F2
[ 1

P.q
(Pµ − P.q

q2
qµ)(Pν − P.q

q2
qν)

]
︸ ︷︷ ︸

Tµν
2

Now we’ll focus on calculation of these SFs FI .
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Structure functions

These FI are Lorentz invariants which cannot be calculated in perturbation
theory. We’ll use Parton model to calculate them.
In parton model, we express FI , {I = 1, 2} as,

FI = x I−1
∑
a,b

∫ 1

x

dx1
x1

fa(x1, µ
2
F )

∫ 1

z

dz1
z1

Db(z1, µ
2
F )

×FI ,ab(
x

x1
,
z

z1
,Q2, µ2

F ).
a

γ∗

b H ′

H X ′

fadx1: The probability of finding a parton of type ‘a’ which carries a
momentum fraction x1 of the parent hadron H.

Dbdz1: The probability that a parton of type ‘b’ will fragment into
hadron H ′ which carries a momentum fraction z1 of the parton.

FI ,ab are the finite coefficient functions (CFs) that can be computed
perturbatively, it is related to partonic cross section.
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Kinematics

Hadronic Kinematics :
P : Initial hadron momenta
kl : Initial e

− momenta
q : Virtual photon momenta
q2 : −Q2 < 0
PH : Momenta of hadron H’
y : P.q

P.kl
, Fractional energy loss by e−

x : Q2

2P.q , Bjorken-x, z : P.PH
P.q

Partonic Kinematics :
pa : parton ‘a’ momenta
pb : Tagged parton momenta ‘b’
x1 : pa

P , z1 : PH
pb

x ′ : x
x1

= Q2

2pa.q
, z ′ : z

z1
= pa.pb

pa.q
ki : Momentum of real radiations

kl
k ′l

pa

q

pb PH

P
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Coefficient functions

Computation of CFs (FI ,ab) starts from the parton level cross section
denoted by σ̂I ,ab, where we defined,

σ̂I ,ab =
Pµν
I

4π

∫
dPSX ′+b Σ|Mab|2µν δ

( z

z1
− pa · pb

pa · q

) γ∗

a
b

here, Pµν
I are the projectors to project out CFs and |Mab|2 is the squared

amplitude for the process a(pa) + γ∗(q) → “b”(pb) + X ′.

Pµν
1 =

1

(D − 2)

(
Tµν
1 + 2xTµν

2

)
Pµν
2 =

2x

(D − 2)x1

(
Tµν
1 + 2x(D − 1)Tµν

2

)
.
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Partonic Cross section

Computation of partonic cross section involves amplitude calculation of
feynman diagrams order by order. Beyond leading order PCS gets
contribution involving loops diagrams as well as real emission diagrams
which gives divergent integrals. Types of divergences:

UV divergence: Due to high momentum in the loop integral, the
integral diverges, which are removed by renormalization of the strong
coupling at µR scale.

IR divergence: Present due to massless particles, further two types-
soft and collinear.

q

pa
−k1

pb

k1

q

pa

pb

using Dimensional Regularization(D = 4 + ϵ),

as(µ2
R) =

αs (µ
2
R )

4π

1

(pa − k1)2
=

−1

2p
(0)
a k

(0)
1 (1− cosθ)

k
(0)
1 → 0(soft) or θ → 0(collinear)
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Partonic Cross section

Infrared divergences cancels among virtual and real emission
processes, except for the collinear divergences related to the a and b
partons in the initial state and the final fragmentation state.

These divergences can be factored out into Altarelli-Parisi (AP)
kernels (mass factorisation) at µF scale,

σ̂I ,ab(ϵ)

x ′I−1
= Γc←a(µ

2
F , ϵ)⊗FI ,cd(µ

2
F , ϵ)⊗̃Γ̃b←d(µ

2
F , ϵ), [f ⊗ g ](x) =

∫ 1

x

dt

t
f (t)g(

x

t
)

here, Γc←a(µ
2
F , ϵ) and Γ̃b←d(µ

2
F , ϵ) are kernels (divergent) corresponding

to initial and final leg respectively.

Γa←b(x
′, µ2

F , ϵ) = δabδ(1− x ′) +
∞∑
i=1

ais(µ
2
F )Γ

(i)
a←b(x

′, ϵ),

Γ̃a←b(z
′, µ2

F , ϵ) = δabδ(1− z ′) +
∞∑
i=1

ais(µ
2
F )Γ̃

(i)
a←b(z

′, ϵ).
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SIDIS subprocesses

LO γ∗q → q

NLO 1 Loop:(V) γ∗q → q
γ∗q → q + g
γ∗g → q + q

2 Loop:(VV) γ∗q → q
NNLO 1 Loop:(RV) γ∗q → q + g

γ∗q → q + g + g
γ∗q → q + qi + qi

1 Loop:(RV) γ∗g → q + q
γ∗g → q + q + g
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SIDIS subprocesses: Sample diagrams

Quark initiated:

γ∗

a

b

γ∗

a

b

γ∗

a

γ∗

a

b

γ∗

a

γ∗

a

γ∗

a

1

2

2

1

a

γ∗

Gluon initiated:

γ∗

a

γ∗

a

γ∗

a
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Computation Steps: Flow chart

Generation of set of Feynman diagrams using ‘QGRAF’, which gives
partonic level diagrams in symbolic form.

Convert the output of QGRAF in ‘FORM’ form to get amplitude for
individual diagrams using in-house codes.

Used FORM extensively to do symbolic calculation like Lorentz
contractions, Dirac algebra, handling Gell-Mann matrices.

Used FORM for calculation of the F1 and F2.

To get the cross section we have to perform Loop integrations and Phase
space integrations (done in D=4 + ϵ, dimensional regularisation).
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Loop Integrals

Using, the fact that the integral of a total derivative vanishes within DR
and the property of scaleless integral, one gets Integration-by-parts
identities to write Loop integrals in terms of the basis of integrals called
Master Integrals (MIs).∫

dD l
∂

∂lµ
[ lµ, pµ

Dν1
1 Dν2

2 ...Dνn
n

]
= 0

Following steps are performed,

Choose Integral families,

Map the loop integrals (large set) onto these Integral families by
shifting of momenta (‘Reduze’).

Then reduce these integrals into basis of integrals i.e. MIs, we used
‘LiteRed’ package which produces IBP reduction rules.

Solve MIs.
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Phase Space Integrals

3-Body Phase Space, pa + q → “pb” + k1 + k2,∫
[dPS]3 =

1

(2π)2D−3

∫
dDk1

∫
dDk2

∫
dDpbδ(k

2
1 )δ(k

2
2 )δ(p

2
b)δ

D(pa + q − pb − k1 − k2)δ(z
′ −

pa.pb

pa.q
)

To solve the Phase space integrals, we used Reverse Unitarity method for
converting phase-space integral into loop integral and performing
reduction to get set of Master Integrals.

δ(p2 −m2) → i

p2 −m2
− c.c .

can be
almost forget

We get total ‘21’ MIs in phase space calculation. Results of these MI’s are
not there in literature, so we solved them using different methods. The
calculation of MIs will be elaborated in next talk by Vaibhav.
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Cross section Calculation

Expanding the results of master integrals up to sufficient order in ϵ.

Then substituted them into cross section calculation to obtain the
divergent partonic cross section (in ϵ → 0).

To separate the singularities at x ′ → 1 or z ′ → 1, we use Plus
distribution. For eg.,

(1− x)ϵ

1− x
=
1

ϵ
δ(1− x) +

∞∑
i=0

ϵi

i!

[ lni (1− x)

1− x

]
+

=
1

ϵ
δ(1− x) +

∞∑
i=0

ϵi

i!
Di (x)

∫ 1

0
dxf (x)[g(x)]+ =

∫ 1

0
dx

(
f (x)− f (1)

)
g(x)

Double distribution,∫ 1

0
dx

∫ 1

0
dz

f (x , z)

[1− x]+[1− z]+
=∫ 1

0
dx

∫ 1

0
dz

f (x , z)− f (1, z)− f (x , 1) + f (1, 1)

(1− x)(1− z)
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Cross section Calculation

We also encountered (z ′− x ′)aϵ−b, (1− z ′− x ′)cϵ−d which were taken care
by partial fractioning and used theta function to separate different sectors.

According to the Feynman +iε prescription of propagators, we added
imaginary part to the scaling variables accordingly, x ′ ≡ x ′ − iε and
z ′ ≡ z ′ − iε.

Using property of Heaviside theta function i.e. θ(y) + θ(1− y) = 1,
we can write, for eg.,

(z ′ − x ′

1− x ′

)ϵ

=
∣∣∣z ′ − x ′

1− x ′

∣∣∣ϵ(θ(z ′ − x ′) + (−1 + iε)ϵ θ(x ′ − z ′)
)

(
1− z ′

1− z ′ − x ′

)ϵ

=

∣∣∣∣ 1− z ′

1− z ′ − x ′

∣∣∣∣ϵ(θ(1− z ′ − x ′) + (−1− iε)ϵ θ(z ′ + x ′ − 1)
)
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Cross section Calculation

Pole structure of the cross section is 1
ϵ2L

.

Collect all the results of subprocesses and do the coupling constant
renormalization to get UV finite result.

After adding all the renormalized subprocesses, we observed the
cancellation of 1

ϵ4
, 1
ϵ3

at NNLO and 1
ϵ2

at NLO.

The left-over pole terms due to initial state and final state collinear
singularities vanishes after mass factorisation procedure.
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Mass Factorization

After coupling constant renormalization at scale µF , we can write mass
factorisation, for eg. at NLO for a, b = q process:

(
1

µ2
F

)
ϵ
2 σ̂

(1)
1,qq = δ(1− x ′)⊗F (1)

1,qq⊗̃δ(1− z ′)

+ δ(1− x ′)⊗F (0)
1,qq⊗̃Γ̃(1)qq + Γ(1)qq ⊗F (0)

1,qq⊗̃δ(1− z ′),

at NNLO for a, b = q process:

(
1

µ2
F

)ϵσ̂
(2)
1,qq +

2β0

ϵ
(
1

µ2
F

)
ϵ
2 σ̂

(1)
1,qq = δ(1− x ′)⊗F (2)

1,qq⊗̃δ(1− z ′)

+ δ(1− x ′)⊗F (1)
1,qb′⊗̃Γ̃

(1)
qb′ + δ(1− x ′)⊗F (0)

1,qq⊗̃Γ̃(2)qq

+ Γ
(1)
a′q ⊗F (0)

1,a′b′⊗̃Γ̃
(1)
qb′ + Γ

(1)
a′q ⊗F (1)

a′q⊗̃δ(1− z ′)

+ Γ(2)qq ⊗F (0)
1,qq⊗̃δ(1− z ′).
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Checks and Results

We calculated NNLO QCD corrections to SIDIS process, which
requires evaluation of new master integrals.

We checked the result of MIs using different methods (brute force
method and differential equation method).

Since Infrared structure is universal, after mass factorization we get
finite result.

We agreed SV Limit of our finite partonic cross section results (in F1)
i.e. terms containing {δ(1− x ′),Di (x

′)} × {δ(1− z ′),Dj(z
′)} against

result known2.

Inclusive results are obtain by integrating z ′, we agreed with N2
c part

of the known results in literature4.

2W. Vogelsang et.al.{arXiv:2109.00847}
4W.L. van Neerven and E.B. Zijlstra, Phys.Lett.B 272,127(1991).
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Plot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z

0.5

1

1.5

2

2.5

3

3.5

4

K
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0.12

)
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(Qσ

)
2

(Qσ
)-

2 Rµ(σ

NLO
NNLO 

We used test realistic model
distributions5:

xq(x , µ2
F ) = 0.6x−0.3(1− x)3.5(1 + 5.0x0.8),

xg(x , µ2
F ) = 1.6x−0.3(1− x)4.5(1− 0.6x0.3).

5S. Moch et.al.{arXiv:0404111}
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Conclusion and Future Plans

We calculated NNLO QCD corrections to SIDIS process using
Feynman diagrammatic approach.

We calculated 21 new master integrals using two different approaches.

New NNLO results display a moderate increase of the K-factor.

Noticed significant reduction in dependence of renormalization scales.

To calculate polarized SIDIS cross section.

To develop Threshold resummation framework for SIDIS.
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Thank you for listening :)
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Back up slides:
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Partonic Cross section

Computation of partonic cross section involves amplitude calculation of
feynman diagrams order by order, Beyond Leading order PCS gets
contribution involving loops diagrams as well as real emissions which gives
divergent integrals. Types of divergences:

UV Divergence: Due to high momentum (or energy) the loop integral
divergences, eg.

p

−k

p − k

p

∫
d4k

(2π)4
1

(k2 −m2 + iϵ)((p − k)2 −m2 + iϵ)

Above one is Logarithmic divergent by naive
power counting.
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Divergences in Partonic Cross section

IR divergence: Due to presence of massless particles,

Soft Divergence: This occurs when one of the propagator corresponds
to massless particle the divergences occurs due to low momentum OR
when massless particles are involved (real) and their momentum is
approaching zero then also divergences occurs in phase space
integration.

Collinear Divergence: When massless particle emits(radiates) another
massless particle and the 3-Momentum of both these particles
becomes parallel (we say they become collinear to each other),
develop this kind of divergences (also called mass divergence).

1

(p − k)2
=

−1

2p(0)k(0)(1− cos θ)

k(0) → 0 (soft) or θ → 0 (collinear)
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Perturbative expansion

Coefficient functions (FI ,ab) can be computed in perturbative expansion in
powers of strong coupling as(µ

2
F ),

FI ,ab =
∞∑
i=0

ais(µ
2
F )F

(i)
I ,ab(µ

2
F )

Also, UV finite and IR divergent partonic cross section can be written as,

σ̂I ,ab = σ̂
(0)
I ,ab +

( 1

µ2
F

) ϵ
2 as σ̂

(1)
I ,ab +

( 1

µ2
F

) ϵ
2 a2s σ̂

(1)
I ,ab +

( 1

µ2
F

)ϵ
a2s σ̂

(2)
I ,ab + O(a3s )
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IBP

Lets Consider One Loop Vacuum massive Integral,

Ia =

∫
dDk

(k2 −m2)a

Using IBP identity,i.e. ∫
dDk

∂

∂kµ
[ kµ

(k2 −m2)a
]
= 0

we get,

(D − 2a)Ia − 2am2Ia+1 = 0

Ia =
(D − 2a+ 2)

2(a− 1)m2
Ia−1

So any integral with a > 1 can be expressed recursively in terms of one
integral I1 (MI)
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