Advanced School & Workshop on Multiloop Scattering Amplitudes NISER - 15-19 January 2024

Lecture II: Slicing methods & (some)Applications

Luca Buonocore

- toy-model example
- connection to resummation
- q_T -subtraction

Slicing methods

Applications to NC Drell-Yan process Remarks

Outline

Slicing methods

- toy-model example
- connection to resummation
- *q_T*-subtraction
- Applications to NC Drell-Yan process Remarks

Outline

- \hat{O} is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a

Toy model @ NLO: phase space slicing

Consider a toy model of a NLO calculation with only one singular (soft) region

- collection of requirements (acceptance, jet algorithm, isolation) ̂
- the expectation value for \hat{O} is obtained considering the differential cross section as probability distribution ̂

$$
\int_0^1 dx \frac{A + Cx}{x^{1+\epsilon}} F_{\hat{\phi}}(x) = \int_0^{\delta} dx \frac{A + Cx}{x^{1+\epsilon}} F_{\hat{\phi}}
$$

power suppressed
contribution, $p > 0$
$$
= \int_0^{\delta} \frac{dx}{x^{1+\epsilon}} [AF_{\hat{\phi}}(0)
$$

$$
= AF_{\hat{\phi}}(0) \frac{\delta^{-\epsilon}}{-\epsilon} + \int_{\delta}^1
$$

$$
= -\frac{A}{\epsilon} F_{\hat{\phi}}(0) + [10 - \frac{\delta^{-\epsilon}}{\epsilon}]
$$

SLICING: the art of splitting the phase space

- \hat{O} is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a

Toy model @ NLO: phase space slicing

Consider a toy model of a NLO calculation with only one singular (soft) region

- collection of requirements (acceptance, jet algorithm, isolation) ̂
- the expectation value for \hat{O} is obtained considering the differential cross section as probability distribution ̂

SLICING: the art of splitting the phase space

$$
<\hat{\mathcal{O}} > = \left(\frac{A}{\epsilon} + B\right) F_{\hat{\mathcal{O}}}(0) - \frac{A}{\epsilon} F_{\hat{\mathcal{O}}}(0)
$$

$$
= BF_{\hat{\mathcal{O}}}(0) + [\log \delta] F_{\hat{\mathcal{O}}}(0) + \int_{\delta}^{1}
$$

The explicit logarithmic term cancels the

- \hat{O} is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a

Toy model @ NLO: phase space slicing

Consider a toy model of a NLO calculation with only one singular (soft) region

- collection of requirements (acceptance, jet algorithm, isolation) ̂
- the expectation value for \hat{O} is obtained considering the differential cross section as probability distribution ̂

SLICING: the art of splitting the phase space

$$
\langle \hat{\mathcal{O}} \rangle = \left(\frac{A}{\ell} + B \right) F_{\hat{\mathcal{O}}}(0) - \frac{A}{\ell} F_{\hat{\mathcal{O}}}(0) + [\log \delta] F_{\hat{\mathcal{O}}}(0) + \int_{\delta}^{1} dx \frac{A + Cx}{x} F_{\hat{\mathcal{O}}}(x) + \mathcal{O}(\delta^{p})
$$

$$
= BF_{\hat{\mathcal{O}}}(0) + [\log \delta] F_{\hat{\mathcal{O}}}(0) + \int_{\delta}^{1} dx \frac{A + Cx}{x} F_{\hat{\mathcal{O}}}(x) + \boxed{\mathcal{O}(\delta^{p})}
$$

The formula is exact only in the **the sect of the section** \mathbf{r} in the below-cut part region limit $\delta \to 0$

Residual power suppressed terms due to the expansion performed

Toy model @ NLO: phase space slicing

SLICING: the art of splitting the phase space

 $<$ 6 > = $BF_{\hat{0}}(0) + [\log \delta]F_{\hat{0}}(0) +$ ̂ 1 *δ dx A* + *Cx x* $F_{\hat{\mathcal{O}}}(x) + \mathcal{O}(\delta^p)$

Global cancellation among large quantities can spoil the numerical accuracy of the final result: **choose a relative large cut-off** *δ*

Toy model @ NLO: phase space slicing

SLICING: the art of splitting the phase space

 $<$ 6 > = $BF_{\hat{0}}(0) + [\log \delta]F_{\hat{0}}(0) +$ ̂ 1 *δ dx A* + *Cx x* $F_{\hat{\mathcal{O}}}(x) + \mathcal{O}(\delta^p)$

Global cancellation among large quantities can spoil the numerical accuracy of the final result: **choose a relative large cut-off** *δ*

Power suppressed terms must be kept under control in order to obtain a **unbiased** result: **choose a relative small cut-off** *δ*

Trade off for choosing the cut-off

 $(0) + [\log \delta] F_{\hat{\phi}}(0) +$ 1 *δ dx A* + *Cx x* $F_{\hat{\mathcal{O}}}(x) + \mathcal{O}(\delta^p)$

Toy model @ NLO: phase space slicing

SLICING: the art of splitting the phase space

$$
\langle \hat{\mathcal{O}} \rangle = BF_{\hat{\mathcal{O}}}(0) + [\log \delta]
$$

Efficiency of the methods relies on how fast the calculation converge to the exact result in the limit $\delta \to 0$

Slicing methods

- toy-model example
- connection to resummation
- *q_T*-subtraction
- Applications to NC Drell-Yan process Remarks

Outline

Phase space slicing resurgence

$$
\int |{\cal M}|^2\ F_J\ {\rm d}\phi_d=\int\limits_0^\delta \left[|{\cal M}|^2\ F_J\ {\rm d}\phi_d\right]_{\rm simp}+\int\limits_\delta^1 |{\cal M}|^2\ F_J\ {\rm d}\phi_4+{\cal O}(\delta)
$$

CONs

- large global cancellation of infrared logarithms
- residual power corrections in the slicing cut-off

- usually simpler (allowed to reach N^3LO for color singlet production)
- connection with **factorisation** theorems and **resummation**
- implications for higher-order matching (MiNNLO/GENEVA)

PROs

One of the main reasons for the slicing comeback is the increase in computing power available for such computations.

Introduce a $\textsf{resolution}$ va $\textsf{riable}\,X$ that discriminates a region with **1-resolved emission** from an completely \textsf{r} **unresolved** region

Phase space slicing as a non-local subtraction

$$
\frac{k^0 + k^3}{q_T^2}
$$

For the production of color-less system F , its transverse momentum q_T is a good resolution variable

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

- 1. At NLO, the cross section is finite for $X > 0$
- 2. At N^kLO :
	- in the region $X > 0$, only N^{k-1} LO singularities
	- in the region $X = 0$, all genuine N^kLO unresolved limits

Phase space slicing as a non-local subtraction

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

$$
\int d\sigma_{N^kLO} \Theta(X_{\text{cut}} - X) = \int d\sigma_{N^kLO}^{(\text{sing})} \Theta(X_{\text{cut}} - X) + \mathcal{O}(X_{\text{cut}}^p) = \int d\sigma_{N^kLO}^{(\text{sing})} \left[1 - \Theta(X - X_{\text{cut}})\right] + \mathcal{O}(X_{\text{cut}}^p)
$$

$$
= \mathcal{H} \otimes d\sigma_{LO} - \int d\sigma_{N^kLO}^{CT} \Theta(X - X_{\text{cut}}) + \mathcal{O}(X_{\text{cut}}^p)
$$

general structure of the singular component

Introduce a $\textsf{resolution}$ va $\textsf{riable}\,X$ that discriminates a region with **1-resolved emission** from an completely \textsf{r} **unresolved** region

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

NkLO

$$
d\sigma_{N^kLO}^{(\text{sing})} = \mathcal{H} \otimes d\sigma_{LO} \delta(X) + \sum_{\ell=0}^{2k-1} \Sigma_{\ell;k} \left[\frac{\Theta(X) \log^{\ell} X}{X} \right]_+ \otimes d\sigma_{LO}
$$

Phase space slicing as a non-local subtraction

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

Introduce a $\textsf{resolution}$ va $\textsf{riable}\,X$ that discriminates a region with **1-resolved emission** from an completely \textsf{r} **unresolved** region

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \int \left[d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT} \right]_{X>X_{\text{cut}}} + \mathcal{O}(X_{\text{cut}}^P)
$$

Virtual correction after subtraction of IR singularities and contribution of soft/collinear origin **(beam, soft, jet functions)**

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

Phase space slicing as a non-local subtraction

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

Real contribution:
$$
N^{k-1}LO
$$

calculation, divergent in the
limit $X_{\text{cut}} \to 0$

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \int \left[d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT} \right]_{X>X_{\text{cut}}} + \mathcal{O}(X_{\text{cut}}^P)
$$

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

Phase space slicing as a non-local subtraction

Complexity of the calculation reduced by one order!

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO} \Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R \Theta(X - X_{\text{cut}})
$$

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT}
$$

Phase space slicing as a non-local subtraction

Counterterm cancels the infrared behaviour of the real calculation in the limit $X_{\text{cut}} \rightarrow 0$ N^kLO ^{*X*>*X*_{cut}} $+$ $\mathcal{O}(X_{\text{cl}}^p)$ $\binom{p}{\text{cut}}$

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT}
$$

Phase space slicing as a non-local subtraction

Counterterm cancels the infrared behaviour of the real calculation in the limit $X_{\text{cut}} \rightarrow 0$ N^kLO ^{*X*>*X*_{cut}} $+$ $\mathcal{O}(X_{\text{cl}}^p)$ $\binom{p}{\text{cut}}$

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

> The cancellation is local in X after integrating out all the other radiation variables:

Introduce a $\textsf{resolution}$ va $\textsf{riable}\,X$ that discriminates a region with **1-resolved emission** from an completely \textsf{r} **unresolved** region

non-local subtraction

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \left[d\sigma_{N^{k-1}LO}^R - d\sigma_{N^k}^{CT} \right]
$$

Phase space slicing as a non-local subtraction

In the unresolved region, approximate the cross section by an expansion in the **soft-collinear limits** Exploit factorisation theorems in EFT, resummation formulae in direct QCD

$$
d\sigma_{N^kLO} = \int d\sigma_{N^kLO}\Theta(X_{\text{cut}} - X) + \int d\sigma_{N^{k-1}LO}^R\Theta(X - X_{\text{cut}})
$$

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT}
$$

- toy-model example
- connection to resummation
- q_T -subtraction

Slicing methods

Applications to NC Drell-Yan process Remarks

Outline

*qT***-subtraction formalism**

1 emission always resolved *F* + *j* @ N*k*−¹ LO

complexity of the calculation reduced by one order!

- **• expand to fixed order**
- $\mathcal{O}(\alpha_s^k)$ ingredient required

Cross section for the production of a triggered final state *F* at N*^k* LO

All emission unresolved; approximate the cross section with its singular part in the soft and/or collinear limits

q_T resummation

$$
d\sigma_{N^kLO} = \mathcal{H} \otimes d\sigma_{LO} + \left[\left[d\sigma_{N^{k-1}LO}^R - d\sigma_{N^kLO}^{CT} \right]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p \right) \right]
$$

q **-subtraction formalism: color-less final state**

 $J_0(bq_T)S_c(Q,b)$ ∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$ **color-less system** F **:** (Q^2, Y, q_T) , *Y*, *qT*) **[Catani, de Florian, Grazzini, 2001]**

$$
\frac{d\sigma^{(sing)}}{dQ^2dYdq_Td\Omega} = \frac{1}{S} \sum_c \frac{d\sigma_{c\bar{c},F}^{(0)}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bq_T) S_c(Q,b)
$$

q **-subtraction formalism: color-less final state** *^T*

 $J_0(bq_T)S_c(Q,b)$ ∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$ ${\bf color\text{-}less system}\ F\text{:} \ (\mathcal{Q}^2\text{, }Y\text{, }q_T)$ **[Catani, de Florian, Grazzini, 2001]**

in **impact parameter space**

tion of the constraint
$$
\delta^2 \left(\mathbf{q}_T - \sum_i \mathbf{k}_{T,i} \right)
$$

q **-subtraction formalism: color-less final state**

 $J_0(bq_T)S_c(\mathcal{Q},b)$ ∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$ ${\bf color\text{-}less system}\ F\text{:} \ (\mathcal{Q}^2\text{, }Y\text{, }q_T)$ **[Catani, de Florian, Grazzini, 2001]**

> Universal **Sudakov Form Factor**: exponentiation of soft-collinear emissions

$$
S_c(Q, b) = \exp \left[- \int_{b_0^2/b^2}^{Q^2} dq^2 A_c \left(\alpha_S(q^2) \right) \ln \frac{Q^2}{q^2} + B_c \left(\alpha_S(q^2) \right) \right]
$$

 A_c , B_c admits a perturbative expansion in α_s

q **-subtraction formalism: color-less final state** *^T*

$$
\frac{d\sigma^{(sing)}}{dQ^2dYdq_Td\Omega} = \frac{1}{S} \sum_c \frac{d\sigma_{c\bar{c},F}^{(0)}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bq_T) S_c(Q,b)
$$

Universal **collinear or beam function**

q **-subtraction formalism: color-less final state**

color-less system F **:** (Q^2, Y, q_T)

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

$$
\frac{d\sigma^{(sing)}}{dQ^2dYdq_Td\Omega} = \frac{1}{S} \sum_c \frac{d\sigma_{c\bar{c},F}^{(0)}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bq_T) S_c(Q,b)
$$

expansion param

counting at the level of the exponent $\sim \exp[Lg_1+g_2+g_3]$ *αs π g*3]

∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$, *Y*, *qT*) **[Catani, de Florian, Grazzini, 2001]**

$$
\text{meter: } a_{\text{S}}(Q) \times \ln \frac{Q^2 b^2}{b_0^2} = a_{\text{S}} L \sim 1
$$

 α _S(*Q*) × ln $\frac{Q^2b^2}{b^2}$ b_0^2 $= a_SL \sim 1$

q **-subtraction formalism: color-less final state** *^T*

 $J_0(bq_T)S_c(Q,b)$ ∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$ **color-less system** F **:** (Q^2, Y, q_T) , *Y*, *qT*) **[Catani, de Florian, Grazzini, 2001]**

$$
\frac{d\sigma^{(sing)}}{dQ^2dYdq_Td\Omega} = \frac{1}{S} \sum_c \frac{d\sigma_{c\bar{c},F}^{(0)}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bq_T) S_c(Q,b)
$$

counting at the level of the exponent $\sim \exp[Lg_1+g_2+$ *αs π g*3]

expansion parameter:

 α _S(*Q*) × ln $\frac{Q^2b^2}{b^2}$ b_0^2 $= a_SL \sim 1$

q **-subtraction formalism: color-less final state**

 $J_0(bq_T)S_c(Q,b)$ ∑ a_1, a_2 ∫ 1 *x*1 *dz*¹ *z*¹ ∫ 1 *x*2 dz_2 *z*2 $[H^FC_1C_2]_{c\bar{c}; a_1a_2}f_{a_1/h_1}(x_1, b_0^2/b^2)f_{a_1/h_2}(x_2, b_1b_2)$ $\int_{a_2/h_2}(x_2, b_0^2/b^2)$ **color-less system** F **:** (Q^2, Y, q_T) , *Y*, *qT*) **[Catani, de Florian, Grazzini, 2001]**

$$
\frac{d\sigma^{(sing)}}{dQ^2dYdq_Td\Omega} = \frac{1}{S} \sum_c \frac{d\sigma_{c\bar{c},F}^{(0)}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bq_T) S_c(Q,b)
$$

counting at the level of the exponent $\sim \exp[Lg_1 + g_2 + g_3]$ *αs π g*3]

qT **subtraction @ NNLO**

expansion parameter:

q **-subtraction formalism: extension to massive final state** *^T*

Initial-state radiation

For $q_T > 0$ one emission is always resolved

The transverse momentum of the final-state system controls the radiation emitted from initial-state partons In the presence of **massless radiators** in the final state at LO, a different observable must be used, like

 N -jettiness or k_T -ness

q **-subtraction formalism: extension to massive final state** *^T*

There are configurations with $q_T > 0$ and **two unresolved emission if leptons are massless**

Initial-state radiation

For $q_T > 0$ one emission is always resolved

Final-state (collinear) radiation

The transverse momentum of the final-state system controls the radiation emitted from initial-state partons In the presence of **massless radiators** in the final state at LO, a different observable must be used, like

 N -jettiness or k_T -ness

q **-subtraction formalism: extension to massive final state** *^T*

There are configurations with $q_T > 0$ and **two unresolved emission if leptons are massless**

Initial-state radiation

For $q_T > 0$ one emission is always resolved

Final-state (collinear) radiation

The transverse momentum of the final-state system controls the radiation emitted from initial-state partons In the presence of **massless radiators** in the final state at LO, a different observable must be used, like

N-jettiness or k_T -ness

q **-subtraction formalism: extension to massive final state** *^T*

There are configurations with $q_T > 0$ and **two unresolved emission if leptons are massless**

Final-state (collinear) radiation

We need **massive** leptons to resolve/ regulate the singular limits associated to a photon collinear to a final-state lepton (or coloured massive particles)!

Same reasoning applies to **heavy-quark** production

The transverse momentum of the final-state system controls the radiation emitted from initial-state partons In the presence of **massless radiators** in the final state at LO, a different observable must be used, like

N-jettiness or k_T -ness

q^{τ}**subtraction formalism: extension to massive final state**

 $d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{NLO}^R - d\sigma_{NN}^{CT}$ $NNLO$] $q_T > q_T^{\text{cut}}$ $+$ $\mathcal{O}\left(q_T^{\text{cut}}\right)$ *p*)

All ingredients for $F + j$ @ NLO available:

Efficient local subtraction scheme available, for example dipole subtraction **[Catani, Seymour, 1998] [Catani, Dittmaier, Seymour, Trocsanyi 2002]**

Required matrix elements implemented in **public one-loop provider** such as OpenLoops2 and Recola **[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller 2019] [Actis, Denner, Hofer, Lang, Scharf, Uccirati, 2017]**

Automatised implementation in the MATRIX framework, which relies on the efficient multi-channel Monte Carlo integrator MUNICH **[Grazzini, Kallweit, Wiesemann, 2017] [Kallweit in preparation]**

q **-subtraction formalism: extension to massive final state** *^T*

 $d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} +$ ^{*[do*}

 $\mathcal H$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

[Catani, Cieri, de Florian, Ferrera, Grazzini , 2012] [Gehrmann, Luebbert, Yang, 2014] [Echevarria, Scimemi, Vladimirov, 2016] [Luo, Wang, Xu, Yang, Yang, Zhu, 2019] [Ebert, Mistlberger, Vita]

• Beam functions

• Soft function

Same beam function of colorsinglet production

Computed up to N^3LO

$$
\sigma_{NLO}^R - d\sigma_{NNLO}^{CT}\big]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p\right)
$$

q **-subtraction formalism: extension to massive final state** *^T*

- Beam functions
- Soft function

- Soft logarithms controlled by the **transverse momentum anomalous dimension** Γ_t **known up to** NNLO **[Mitov, Sterman, Sung, 2009], [Neubert, et al 2009]**
- Hard coefficient gets a **non-trivial** colour structure (matrix in colour-space)
- Non trivial azimuthal correlations

The resummation formula shows a **richer structure** because of additional soft singularities

$$
d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} + \int \left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p \right)
$$

$\mathcal H$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

q **-subtraction formalism: extension to massive final state** *^T*

- Beam functions
- Soft function

The resummation formula shows a **richer structure** because of additional soft singularities

Non trivial ingredient

- **Two-loop soft function** for heavy-quark (back-toback Born kinematic) **[Catani, Devoto, Grazzini, Mazzitelli,2023]**
- Recently generalised to **arbitrary kinematics [Devoto, Mazzitelli in preparation]**

$$
d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} + \int \left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p \right)
$$

$\mathcal H$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

q **-subtraction formalism: recent calculations** *^T*

 H tī, Wtī, Wb \bar{b} (with approximate two-loop amplitudes)

$$
d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} + \left[\left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p \right) \right]
$$

 $\mathscr H$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin Once the corresponding two-loop amplitudes are available, the framework allows one to calculate • (N)NNLO QCD corrections for colour-singlet, heavy-quark, heavy-quark plus colour-singlet

q **-subtraction formalism: recent calculations** *^T*

 $\mathscr H$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin Once the corresponding two-loop amplitudes are available, the framework allows one to calculate

- (N)NNLO QCD corrections for colour-singlet, heavy-quark, heavy-quark plus colour-singlet
- **mixed QCDxEW corrections** to color singlet-production

 $NC DY @ O(\alpha \alpha_S)$, two-loop $2 \rightarrow 2$ but many scales!

$$
d\sigma_{NNLO} = \mathcal{H} \otimes d\sigma_{LO} + \left[\left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_T > q_T^{\text{cut}}} + \mathcal{O}\left((q_T^{\text{cut}})^p \right) \right]
$$

- toy-model example
- connection to resummation
- *q_T*-subtraction

Slicing methods

Applications to NC Drell-Yan process

Remarks

Outline

State-of-art predictions for NC Drell-Yan: intro

- extremely **precise** determination of **W mass** 80.354±0.007 GeV with expected **uncertainties** <u>at the level of $\mathcal{O}(10\,\text{MeV})$ </u> at the end of HL-LHC
- measurement of the effective mixing angle starts to **compete** $\textbf{with LEP:}\ \sin^2\theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00053$

- Modelling of the SM background **relevant** for new physics searches
- Measurement of the dilepton invariant mass spectrum **expected at** $\mathcal{O}(1\%)$ at $m_{\ell\ell} \sim 1 \,\mathrm{TeV}$
- Requires control of the SM prediction at the $\mathcal{O}(0.5\%)$ level in the TeV

Off-Shell Region

Resonant Region

LHC Electro-Weak precision physics:

 $(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \hat{\sigma}_{ab}(\hat{s}, \mu_R, \mu_F) + \mathcal{O}(\Lambda/Q)$ ̂ ̂

State-of-art predictions for NC Drell-Yan: intro

$$
\sigma = \int dx_1 dx_2 f_{a/h_1}(x_1, \mu_F)
$$

- **NNLO differential cross sections** Grazzini (2009)] [Catani, Ferrera, Grazzini (2010)]
-
- N³LO fiducial cross sections and distributions

very accurate SM predictions!

QCD corrections dominant effects. They are known up to

[Anastasiou, Dixon, Melnikov, Petriello (2003)], [Melnikov, Petriello (2006)] [Catani, Cieri, Ferrera, de Florian,

• N³LO inclusive cross sections and di-lepton rapidity distribution

$$
\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0,0)} + \hat{\sigma}_{ab}^{(1,0)} + \hat{\sigma}_{ab}^{(2,0)} + \hat{\sigma}_{ab}^{(3,0)} + \dots \qquad \qquad \text{QCD}
$$

[Duhr, Dulat, Mistlberger (2020)] [Chen, Gehrmann, Glover, Huss, Yang, and Zhu (2021)] [Duhr, Mistlberger (2021)]

[Camarda, Cieri, Ferrera (2021)], [Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)]

 \rightarrow QCD corrections: usually **quadratic** ($p = 2$) for inclusive setups for the production of a color-less system

Power Corrections (PCs) in the Drell-Yan process

Power Corrections (PCs) in the Drell-Yan process

- \triangleright <u>QCD corrections</u>: usually **quadratic** ($p = 2$) for inclusive setups for the production of a color-less system
- \triangleright linear power corrections ($p = 1$) may arise for fiducial cuts in 2-body kinematics [Ebert, Tackmann, 2019],[Salam, Slade, 2021]
- \blacktriangleright linear power corrections ($p = 1$) with logarithmic enhancement for photon isolation [Grazzini, Wiesemann, Kallweit, 2018],[Ebert, Tackmann, 2019]

 \triangleright <u>OCD corrections</u>: usually **quadratic** ($p = 2$) for inclusive setups for the production of a color-less system

Power Corrections (PCs) in the Drell-Yan process

- \triangleright **linear** power corrections ($p = 1$) may arise for **fiducial cuts** in 2-body kinematics [Ebert, Tackmann, 2019],[Alekin, Kardos, Moch, Trocsanyi, 2021],[Salam, Slade, 2021] *p* = 1)
- Iinear power corrections (

For example, **symmetric cuts** on the dilepton final state

 $p_{T,\ell} > p_{\text{cut}}, p_{T,\bar{\ell}} > p_{\text{cut}}$

but also **asymmetric cuts on the transverse momenta of the hardest and softest lepton** lead to the same problem

Remark: this is connected to a more fundamental problem of the convergence of the perturbative espansion

\triangleright <u>OCD corrections</u>: usually **quadratic** ($p = 2$) for inclusive setups for the production of a color-less system

Power Corrections (PCs) in the Drell-Yan process

-
- \triangleright linear power corrections ($p = 1$) may arise for fiducial cuts in 2-body kinematics [Ebert, Tackmann, 2019],[Alekin, Kardos, Moch, Trocsanyi, 2021],[Salam, Slade, 2021]
- Iinear power corrections (

Power Corrections (PCs) in the Drell-Yan process

\triangleright <u>OCD corrections</u>: usually **quadratic** ($p = 2$) for inclusive setups for the production of a color-less system

- \triangleright linear power corrections ($p = 1$) may arise for fiducial cuts in 2-body kinematics [Ebert, Tackmann, 2019],[Alekin, Kardos, Moch, Trocsanyi, 2021],[Salam, Slade, 2021] \triangleright linear power corrections ($p = 1$) may arise Y ardos Mo +10 \Box],[\Box TCP] 101 $\lceil \Delta \rceil$ ek $\overline{\text{C}}$ α km
- Iinear power corrections ($\lim_{\alpha \to 0} \lim_{\alpha \to 0} \frac{\partial f}{\partial x}$

Power Corrections (PCs) in the Drell-Yan process

All the ingredients avaialble and efficiently computable time load: $\mathcal{O}(\leq 1\%)$

Calculation of $Z + 1j$ @ NNLO pushed to its limit (performed with ANTENNA subtraction as implemented in the NNLOJET code)

- 2-loop amplitudes pushed in single unresolved limit
- 1-loop amplitudes pushed in the double unresolved limit

time load: $\mathcal{O}(99\%)$

$$
d\sigma_{N^3LO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_N^R
$$

NNLO − *dσCT* $\left[\frac{N^3LO}{q_T>q_T^{\text{cut}}} \right]$ $+$ $\mathcal{O}\left(q_T^{\text{cut}}\right)$ *p*)

Knowledge of linear power corrections **crucial for this application**

Re, L. Rottoli, P. Torrielli, 2023]

Power Corrections (PCs) in the Drell-Yan process

All the ingredients avaialble and efficiently computable time load: $\mathcal{O}(\leq 1\%)$

Calculation of $Z + 1j$ @ NNLO pushed to its limit (performed with ANTENNA subtraction as implemented in the NNLOJET code)

Overall running time: $\mathcal{O}(5M)$ CPU hours to get results for single differential distributions

Experimentalists can measure triple-differential distributions: Naive estimate $\mathcal{O}(100M)$ CPU hours

$$
d\sigma_{N^3LO} = \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_N^R
$$

NNLO − *dσCT* $\left[\frac{N^3LO}{q_T>q_T^{\text{cut}}} \right]$ $+$ $\mathcal{O}\left(q_T^{\text{cut}}\right)$ *p*)

- 2-loop amplitudes pushed in single unresolved limit
- 1-loop amplitudes pushed in the double unresolved limit

time load: $\mathcal{O}(99\%)$

Re, L. Rottoli, P. Torrielli, 2023]

State-of-art predictions for NC Drell-Yan: intro

$$
\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0,0)} + \hat{\sigma}_a^(0)
$$

- known since long $(2002)]$
- nowadays **automatised** in different available generators

[Les Houches 2017, 1803.07977]

very accurate SM predictions!

 $(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \hat{\sigma}_{ab}(\hat{s}, \mu_R, \mu_F) + \mathcal{O}(\Lambda/Q)$ ̂ ̂

[S. Dittmaier and M. Kramer (2002)], [Baur,Wackeroth (2004)], [Baur, Brein, Hollik, Schappacher, Wackeroth

$$
\sigma = \int dx_1 dx_2 f_{a/h_1}(x_1, \mu_F)
$$

State-of-art predictions for NC Drell-Yan: intro

$$
\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0,0)} + \hat{\sigma}_{ab}^{(1,0)} + \hat{\sigma}_{ab}^{(2,0)} + \hat{\sigma}_{ab}^{(3,0)} + \dots
$$
 QCD
+
$$
\hat{\sigma}_{ab}^{(0,1)} + \dots
$$
 EW
+
$$
\hat{\sigma}_{ab}^{(1,1)} + \dots
$$
 QCD-EW

very accurate SM predictions!

Mixed QCD-EW corrections

 $(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \hat{\sigma}_{ab}(\hat{s}, \mu_R, \mu_F) + \mathcal{O}(\Lambda/Q)$ ̂ ̂

• should **compete with N³LO** according to the physical counting $\alpha \approx \alpha_S^2$ and represent the leading residual theoretical

- uncertainties due to truncation of the perturbative expansion
- regions

from factorised anse $\mathcal{O}(-2\%)$ at $m_{\ell\ell} = 1$ Te

• is **highly desirable** in view of the expected precision target at HL-LCH, both in the resonant and and in the off-shell

$$
\sigma = \int dx_1 dx_2 f_{a/h_1}(x_1, \mu_F)
$$

$$
\begin{array}{lll}\n\mathbf{a} & d\sigma \\
\frac{d\sigma}{dX} & = \frac{d\sigma^{(1,0)}}{dX} \frac{d\sigma^{(0,1)}}{dX} \left(\frac{d\sigma^{(0,0)}}{dX}\right)^{-1}\n\end{array}
$$

MATRIX

dipole subtraction

AMPLITUDES

- 1-loop amplitudes: **OpenLoops, Recola** (Collier, CutTOols,…)
- 2-loop: dedicated 2-loop codes (VVamp, GiNac, TDHPL,…)

SUBTRACTION SCHEME

- @NLO: dipole (and q_T subtraction)
- @NNLO: q_T subtraction

• NNLO QCD differential predictions for many color singlet processes: *H*, *V*, $\gamma\gamma$, *VV*, *VV* for all leptonic decays

-
- combination with NLO EW for all leptonic V and VV processes
- loop-induced gluon fusion channel at NLO QCD for neutral VV processes
- MATRIX v2.1 matrix.hepforge.org
	- NNLO QCD for *tt* and *γγγ* production
	- **bin-wise extrapolation** and inclusion of QCD **fiducial power corrections** in 2-body kinematics

[Grazzini, Kallweit, Wiesemann, 2018]

MATRIX v2.0

MATRIX

dipole subtraction

AMPLITUDES

- 1-loop amplitudes: **OpenLoops, Recola** (Collier, CutTOols,…)
- 2-loop: dedicated 2-loop codes (VVamp, GiNac, TDHPL,…)

SUBTRACTION SCHEME

- @NLO: dipole (and q_T subtraction)
- @NNLO: q_T subtraction

- NNLO QCD differential predictions for many color singlet processes: *H*, *V*, $\gamma\gamma$, *VV*, *VV* for all leptonic decays
- combination with NLO EW for all leptonic V and VV processes
- loop-induced gluon fusion channel at NLO QCD for neutral VV processes
- MATRIX v2.1 matrix.hepforge.org
	- NNLO QCD for *tt* and *γγγ* production
	- **bin-wise extrapolation** and inclusion of QCD **fiducial power corrections** in 2-body kinematics

MATRIX v2.0

[Grazzini, Kallweit, Wiesemann, 2018]

Mixed QCD-EW corrections for Drell-Yan available in a future

release

Mixed QCD-EW corrections: dependence on the cutoff

<u>EW corrections</u>: **linear** ($m = 1$) power corrections due to final-state emission

- <u>Mixed QCD-NLO EW:</u> linear $(m=1) + log$ enhancement
	-
	-
	-

 $d\sigma =$ ∞ ∑ *m*,*n*=0

Mixed QCD-EW corrections: Hard-Virtual coefficient

• The **hard-collinear** coefficient brings in the **virtual corrections** and finite remainder that lives at $q_T = 0$, restoring the correct **normalisation**

$$
d\sigma^{(m,n)}\atop O(\alpha_s^m\alpha^n)\text{ term}
$$

$$
\mathcal{H}^{F} = [H^{F}C_{1}C_{2}]
$$

\nProcess independent (universal)
\ncollinear functions known up N³LO in QCD
\n[Catani, Grazzini (2011)],
\n[Catani, Grazzin (2011)],
\n[Latini, Cieri, de Florian, Ferrera, Grazzini (2012)
\n[Low, Yang, Zhu, Zhu (2019)]
\n[Boert, Mistlberger, Vita (2020)]
\n[Boert, Mistlberger, Via (2020)]
\n(2012)
\n(2020)
\n(2012)
\n(2012)
\n(2013)
\n(2014)
\n(2019)
\n(2019)
\n(2010)
\n(2011)
\n(2019)
\n(2010)
\n(2011)
\n(2011)
\n(2019)
\n(2010)
\n(2011)
\n(2011)
\n(2019)
\n(2010)
\n(2011)
\n(2012)
\n(2019)
\n(2010)
\n(2011)
\n(2011)
\n(2012)
\n(2012)
\n(2019)
\n(2010)
\n(2011)
\n(2012)
\n(2012)
\n(2019)
\n(2019)
\n(2010)
\n(2011)
\n(2012)
\n(2019)
\n(2010)
\n(2012)
\n(2019)
\n(2010)
\n(2010)
\n(2011)
\n(2012)
\n(2012)
\n(2013)
\n(2014)
\n(2019)
\n(2010)
\n(2010)
\n(2011)
\n(2012)
\n(2019)
\n(2010)
\n(2010)
\n(2011)
\n(2012)
\n(2019)
\n(2010)
\n(2011)
\n(2012)
\n(2019)
\n(2010)<

Process dependent hard-virtual functions: universal relation with the all-order virtual amplitude [Catani, Cieri, de Florian, Ferrera Grazzini (2013)]

$$
|\tilde{M}\rangle = (1-\tilde{I})|\mathcal{M}\rangle
$$

$$
H^F \sim \langle \tilde{M} | \tilde{M}\rangle
$$

 $\mathcal{H}^{(m,n)}$

$$
d\sigma^{(1,1)} = \left[\mathcal{H}^{(1,1)} \otimes d\sigma_{LO} + \left[d\sigma_R^{(1,1)} - d\sigma_{CT}^{(1,1)} \right]_{q_T/Q > r_{\text{cut}}}
$$

IR subtracted amplitude

Mixed QCD-EW corrections: Hard-Virtual coefficient

Treatment of γ_5 : Naive anti-commuting γ_5 with reading point prescription and Larin prescription as an independent cross check

Numerical grid

- 5 MIs with **two massive** bosons cannot be easily expressed in terms of GPls
- Require an **alternative strategy** (see also [Heller, von Manteuffel, Schabinger (2019)])
	- Semi-analytical evaluation of tree-loop interference [Armadillo, Bonciani, Devoto, Rana, Vicini 2022]
		- Numerical resolution of differential equations for MIs via **series expansions,** inspired by DiffExp [Hidding (2006)] but extended for **complex masses**
		- **Arbitrary number of significant digits** (with analytic boundary condition)
		- The method is **general** (applicable to other processes)
		- Numerical evaluation of amplitudes takes $\mathcal{O}(10 \text{ min}/\text{point})$ per core

MIs with **up to one massive** boson exchange are evaluated analytically

[Bonciani, Di Vita, Matrolia, Schubert, 2016], [Heller, von Manteuffel, and Schabinger, 2020] [Hasan, Schubert, 2020], [R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, 2008], [R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, 2008], [P. Mastrolia, M. Passera, A. Primo, and U. Schubert, 2017]

• **Validation**: several checks of the MIs performed with Fiesta and PySecDec, comparison with the PA in the resonant region

Mixed QCD-EW corrections: Hard-Virtual coefficient

-
- Evaluation: preparation of an optimised numerical grid covering the physical $2 \to 2$ phase space relevant the LHC in $(s,\cos\theta)$ with GiNaC and SeaSide and **interpolation with cubic splines** for numerical integration
	- \blacktriangleright $\mathcal{O}(9 \text{ h})$ on a 32-cores machines for 3000 grid points
	- ‣ the **lepton mass is kept finite** wherever needed to regularise the final state collinear divergence; the logarithms of the lepton mass are subtracted from the numerical grid and added back analytically
	- ‣ the resulting UV- and IR-subtracted Hard-Virtual coefficient is a **smooth, slowly varying** function

 $\sigma^{(1,1)}$

First calculation of complete mixed QCD-EW correction to Drell-Yan [LB, Bonciani, Grazzini, Kallweit, Rana, Tramontano,Vicini 2021]

Mixed QCD-EW corrections: pheno results

SETUP (LHC $\textcircled{a} \sqrt{s} = 14 \text{ TeV}$)

- NNPDF31_nnlo_as_0118_luxqed
- $p_{T,\mu} > 25 \text{ GeV}, \quad |y_{\mu}| < 2.5, \quad m_{\mu^+\mu^-} > 50 \text{ GeV}$
- massive muons (no photon lepton recombination)
- G_μ scheme, complex mass scheme
- fixed scale $\mu_F = \mu_R = m_Z$
- ‣ NLO and NNLO QCD corrections show large cancellations among the partonic channels (especially between $q\bar{q}$ and qg)
- NLO QCD and NLO EW corrections are of the same order and opposite sign (accidental cancellation)
- ‣ Mixed QCD-EW corrections are dominated by the *qg* channel and are larger than NNLO QCD (for the particular chosen setup)
- ‣ Photon induced processes rather suppressed

Computational resources

- $\mathcal{O}(120k)$ core hours for NNLO QCD (reduced by a factor 2-3 by including fiducial PCs)
- $O(180k)$ core hours for mixed QCD-EW

Mixed QCD-EW corrections: pheno results

First calculation of complete mixed QCD-EW correction to Drell-Yan [LB, Bonciani, Grazzini, Kallweit, Rana, Tramontano,Vicini 2021]

- ‣ Breakdown of naive QCD-QED factorisation below Z peak
- ‣ PA provides an excellent description **near the resonance**
- $O(1\%)$ corrections at 1 TeV, PA slightly off

- ‣ Around resonance, breakdown of fixed-order
- Naive QCD-QED factorisation fails to describe the high-tail
- The high-tail is dominated by $Z+1$ jet configurations, with Z almost on shell; qg channel by far dominant

Concluding remarks

- Jet processes: main resolution variable is N-jettiness. Ingredients known at NNLO up to two jets (in pp collisions)
- New resolution transverses-like variables for jet processes: k_T -ness, so far formulated only at NLO
- formalism as MiNNLO and GENEVA

- Interconnection with parton shower in the context of matching higher fixed-order corrections to parton showers in

[Stewart, Tackmann, Waalewijn, 2010]

[LB, Grazzini, Haag, Rottoli, Savoini, 2022]

[Monni, Nason, Re, Wiesemann,Zanderighi, 2022] [Alioli, Bauer, Berggren, Hornig, Tackmann, 2012]

Backups

Hard-Virtual coefficient: IR structure and finite amplitudes

$$
\mathcal{M}_{fin}^{(1,0)} = \mathcal{M}^{(1,0)} + \frac{1}{2} \left(\frac{\alpha_s}{\pi} \right) C_F \left[\frac{1}{e^2} + \left(\frac{3}{2} + i\pi \right) \frac{1}{e} - \frac{\pi^2}{12} \right] \mathcal{M}^{(0)}
$$
\n
$$
\mathcal{M}_{fin}^{(0,1)} = \mathcal{M}^{(0,1)} + \frac{1}{2} \left(\frac{\alpha}{\pi} \right) \left\{ \left[\frac{1}{e^2} + \left(\frac{3}{2} + i\pi \right) \frac{1}{e} - \frac{\pi^2}{12} \right] \frac{e_e^2 + e_e^2}{2} - \frac{2\Gamma_t}{\epsilon} \right\} \mathcal{M}^{(0)}
$$
\n
$$
\mathcal{M}_{fin}^{(1,1)} = \mathcal{M}^{(1,1)} - \left(\frac{\alpha_s}{\pi} \right) \left(\frac{\alpha}{\pi} \right) \left\{ \frac{1}{8\epsilon^4} (e_e^2 + e_e^2) C_F + \frac{1}{2\epsilon^3} C_F \left[\left(\frac{3}{2} + i\pi \right) \frac{e_e^2 + e_e^2}{2} - \Gamma_t \right] \right\} \mathcal{M}^{(0)}
$$
\n
$$
+ \frac{1}{2e^2} \left\{ \left(\frac{\alpha}{\pi} \right) \frac{e_e^2 + e_{\bar{c}}^2}{2} \mathcal{M}_{fin}^{(1,0)} + C_F \left(\frac{\alpha_s}{\pi} \right) \mathcal{M}_{fin}^{(0,1)}
$$
\n
$$
+ C_F \left(\frac{\alpha_s}{\pi} \right) \left(\frac{\alpha}{\pi} \right) \left[\left(\frac{7}{12} \pi^2 - \frac{9}{8} - \frac{3}{2} i\pi \right) \frac{e_e^2 + e_{\bar{c}}^2}{2} + \left(\frac{3}{2} + i\pi \right) \Gamma_t \right] \mathcal{M}^{(0)} \right\}
$$
\n
$$
+ \frac{1}{2e} \left\{ \left(\frac{\alpha}{\pi} \right) \left[\left(\frac{3}{2} + i\pi \right) \frac{e_e^2 + e_{\bar{c}}^2}{2} - 2\Gamma_t \right] \mathcal
$$

Factorise ansatz

We present our prediction for the $\mathcal{O}(\alpha_s \alpha)$ correction as

- •absolute correction
- •normalised correction with respect to the LO cross section
- normalised correction with respect to the NLO QCD cross section

We compare our results with the naive factorised ansantz given by the formula

 $d\sigma^{(1,1)}_{\rm fact}$ $\frac{dX}{dX}$ = ($d\sigma^{(1,0)}$ $\frac{dX}{dx}$) \times

$$
\left(\frac{d\sigma_{q\bar{q}}^{(0,1)}}{dX}\right)\times\left(\frac{d\sigma_{\rm LO}}{dX}\right)^{-1}
$$

At NLO, gluon/photon initiated channels open up populating the tail of the p_T spectrum, thus leading to large corrections (*giant K-factors*)

Remark (especially for the transverse momentum distribution)

A factorised approach is justified if the dominant sources of QCD and EW corrections factorise with respect to the hard W production subprocesses.

We do not include the **photon-induced** channels in the NLO-EW differential K-factor to avoid the multiplication of two giant K-factors of QCD and EW origin, which is not expected to work *[Lindert, Grazzini, Kallweit, Pozzorini, Wiesemann (2019)]*

Convergence of the perturbative expansion in the presence of fiducial cuts

Fiducial cuts may challenge the convergence of the perturbative fixed-order series

Viable resolution strategies

- improve the convergence by **resumming** the linear power corrections
- **alternative** choices of cuts *[Salam, Slade, 2021]*

- **radiation** when the two particles are back-to-back in the transverse plane *[Klaser, Kramer, 1996], [Harris, Owens, 1997], [Frixione, Ridolfi, 1997]*
- They lead to linear power corrections in the transverse momentum spectrum of the color singlet q_T
- The linear dependence in q_T is related to a **factorial growth** of the coefficients in the perturbative series (with **alternating-sign** coefficient, hence Borel-summable) *[Salam, Slade, 2021]*
- The effect is larger for the case of the Higgs due to its **Casimir scaling**
- **Asymmetric cuts** on the transverse momentum of the hardest and the of the softest particle do not improve the situation.
- Symmetric cuts and asymmetric cuts are commonly used for Drell-Yan and Higgs analysis, respectively.

• **Symmetric cuts** on the transverse momentum of the two-body decay products lead to an **enhanced sensitivity to soft**

Restoring the quadratic dependence on q_T

In the standard q_T subtraction master formula *[Catani, Grazzini, 2007]*

$$
\sigma_{\text{(N)NLO}}^{\text{F}} = \int d\sigma_{\text{LO}}^{\text{F}} \otimes \mathcal{H} + \int \left[d\sigma_{\text{(N)LO}}^{\text{F+jet}} - d\sigma_{\text{CT}}^{\text{F}} \right] \theta(q_T/Q - r_{\text{cut}}) + \mathcal{O}\left(r_{\text{cut}}^k\right)
$$

the counterterm is given by a $\bm{\mathsf{pure}}$ LP $\bm{\mathsf{expansion}}$ of the q_T spectrum

-
- below r_{cut} : all power corrections are missing

Formally, the residual dependence on the slicing parameter $r_{\rm cut}$ is given by the integral of the non-singular component of the real spectrum below the cut.

$$
\int d\sigma_{\rm (N)LO}^{\rm F+jet, reg}
$$

For the case of **fiducial cuts**, the leading power correction is linear ($k = 1$). It can be **predicted by factorisation** and is equivalent to the q_T recoil prescription

$$
F + \text{jet}, \text{reg}_{\theta}(r_{\text{cut}} - q_T/Q)
$$

$$
\int d\Phi_{\text{F+jet}} \frac{d\sigma_{\text{(N)LO}}^{\text{F+jet,reg}}}{d\Phi_{\text{F+jet}}} \theta(r_{\text{cut}} - q_{\text{T}}/Q) \Theta_{\text{cuts}}(\Phi_{\text{F+jet}}) = \int d\Phi_{\text{F}} \int_{0}^{r_{\text{cut}}} dr' \left[\frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}} \Theta_{\text{cuts}}(\Phi_{\text{F}} - r') \right] - \frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}} \Theta_{\text{cuts}}(\Phi_{\text{F}}) \right] + \mathcal{O}(r_{\text{cut}}^2)
$$

where $\Theta_{\rm cuts}$ implements the fiducial cuts and $\Phi_{\rm F}^{\rm rec} = \Phi_{\rm F}^{\rm rec}(\Phi_{\rm F},r')$ is the recoiled kinematics

• above r_{cut} : all power corrections are exactly provided by the real matrix element (avoiding any double counting)

Restoring the quadratic dependence on q_T

Improved q_T subtraction master formula

$$
\sigma_{\text{(N)NLO}}^{\text{F}} = \int d\sigma_{\text{LO}}^{\text{F}} \otimes \mathcal{H} + \int \left[d\sigma_{\text{(N)LO}}^{\text{F+jet}} - d\sigma_{\text{CT}}^{\text{F}} \right] \theta(q_T/Q - r_{\text{cut}}) + \Delta \sigma^{\text{linPCs}}(r_{\text{cut}}) + \mathcal{O}\left(r_{\text{cut}}^{k'}\right)
$$

Remarks on the linPC term

- it affects the q_T subtraction formula at the **power corrections** level only
- its formulation is **fully differential** with respect to the Born phase space
- it is **integrable** in 4 dimensions (local cancellation of infrared singularities)
- it is completely determined by the **knowledge of the counterterm** (can be easily **implemented** in any code implementing the q_T subtraction method)

dr′

 \mathbf{I}

 $\Delta \sigma^{\text{linPCs}}(r_{\text{cut}}) = \left[d\Phi_{\text{F}} \right]$ r_{cut} 0 with the **linPC** term, $\Delta \sigma^{\text{linPCs}}(r_{\text{cut}})$, given by

$$
\frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}}\Theta_{\text{cuts}}\left(\Phi_{\text{F}}^{\text{rec}}(\Phi_{\text{F}},r')\right) - \frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}}\Theta_{\text{cuts}}(\Phi_{\text{F}})
$$

Restoring the quadratic dependence on q_T

Improved q_T subtraction master formula

$$
\sigma_{(N)NLO}^{F} = \int d\sigma_{LO}^{F} \otimes \mathcal{H} + \int \left[d\sigma_{(N)LO}^{F+jet} - d\sigma_{CT}^{F} \right] \theta(q_T/Q - r_{\text{cut}}) + \Delta \sigma^{\text{linPCs}}(r_{\text{cut}}) + \mathcal{O}\left(r_{\text{cut}}^{k'}\right)
$$

with the **linPC** term, $\Delta \sigma^{\text{linPCs}}(r_{\text{cut}})$, given by

$$
\Delta \sigma^{\text{linPCs}}(r_{\text{cut}}) = \int d\Phi_{\text{F}} \int_{0}^{r_{\text{cut}}} dr' \left[\frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}} \Theta_{\text{cuts}} \left(\Phi_{\text{F}}^{\text{rec}}(\Phi_{\text{F}}, r') \right) - \frac{d\sigma_{\text{CT}}^{\text{F}}}{d\Phi_{\text{F}}} \Theta_{\text{cuts}}(\Phi_{\text{F}}) \right]
$$

Remarks on the linPC term

- **quadratic** ($k = 1$ to $k' = 2$)
- for other cases, we expect that its inclusion will not make the power correction scaling worse
- in principle, given its formulation, it can be applied to any process

• for the case of fiducial cuts, we expect that its inclusion will **change the power correction scaling from linear to**

Origin of linear power corrections

$$
q^{\mu} = (m_T \cosh Y, q_T, 0, m_T \sinh Y)
$$

\n
$$
p_1^{\mu} = p_{T,1} \left(\cosh(Y + \Delta y), \cos \phi, \sin \phi, m_T \sinh(Y + \Delta y) \right)
$$

\n
$$
p_1^{\mu} = q^{\mu} - p_1^{\mu}
$$

$$
p_{T,1} = \frac{Q}{2 \cosh \Delta y} \left[1 + \frac{q_T}{Q} \frac{\cos \phi}{\cosh \Delta Y} + \mathcal{O} \left(q_T^2 / \mathcal{O}^2 \right) \right]
$$

$$
p_{T,2} = p_{T,1} - q_T \cos \phi + \mathcal{O} \left(q_T^2 / Q^2 \right)
$$

$$
\eta_1 = Y + \Delta y
$$

$$
\eta_2 = Y - \Delta y - 2 \frac{q_T}{Q} \cos \phi \sinh \Delta y + \mathcal{O} \left(q_T^2 / \mathcal{O}^2 \right)
$$

the small q_T limit

$$
\Phi_{q \to p_1 + p_2}(q_T) = \frac{1}{8\pi^2} \int_0^{2\pi} d\phi \int d\Delta y \frac{p_{T,1}^2}{Q^2} \Theta_{\text{cuts}}(q_T, \phi, \Delta y; \text{cuts})
$$

The integrand has a dependence on q_T through the combinations q_T^2 and $q_T\cos\phi.$ It follows that

The two-body decay **phase space** with cuts is given by

presence of **linear fiducial power corrections**

use of cuts **breaking the azimuthal symmetry**

Kinematics of the two-body decay *[Ebert, Michel, Stewart, Tackmann, 2020], [Alekin, Kardos, Moch, Trocsanyi, 2021], [Salam, Slade, 2021]*

Origin of linear power corrections

 $Symmetric cuts:$

 T , $i = 1,2 \implies \min(p_{T,1}, p_{T,2}) > p_T^{\text{cut}}$

$$
\min(p_{T,1}, p_{T,2}) = \begin{cases} p_{T,1} & \cos \phi < 0 \\ p_{T,1} - q_T \cos \phi & \cos \phi > 0 \end{cases} \qquad \Phi(q_T) - \Phi(0) = -\frac{1}{2\pi^2} \frac{q_T}{Q} \frac{p_T^{\text{cut}}/Q}{\sqrt{1 - (2p_T^{\text{cut}})^2/Q^2}} \int_0^{\pi/2} d\phi \cos \phi
$$

Asymmetric cuts:

$$
p_T^{\text{hard}} > p_T^{\text{cut},h}
$$
 and $p_T^{\text{soft}} > p_T^{\text{cut},s} \implies \min(p_{T,1}, p_{T,2}) > p_T^{\text{cut},s}$

Equivalent to the symmetric cuts case: **it does not solve the issue of the appearance of linear power corrections**!

Staggered cuts:

two different integrands: **breaking of azimuthal symmetry**

$$
T^{\text{cut}} + \delta p_T \text{ and } p_{T,2} > p_T^{\text{cut}} \implies \min(p_{T,1} - \delta p_T, p_{T,2}) > p_T^{\text{cut}}
$$

In the region $q_T < \delta p_T$, the **quadratic dependence on** q_T is

$$
\min(p_{T,1} - \delta p_T, p_{T,2}) = \begin{cases} p_{T,1} - \delta p_T & \cos \phi < \delta p_T / q_T \\ p_{T,1} - q_T \cos \phi & \cos \phi > \delta p_T / q_T \end{cases}
$$

restored, as numerically observed in *[Grazzini,Kallweit,Wiesemann, 2017]*

Fiducial PCs and differential distributions

