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Radiative corrections for LHC phenomenology

Hadron-hadron collisions: very complicated processes probing multi-scale nature of QFT in perturbative and
non-perturbative regimes
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Radiative corrections for LHC phenomenology

Hadron-hadron collisions: very complicated processes probing multi-scale nature of QFT in perturbative and
non-perturbative regimes
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Hard Scattering: fixed Order Predictions

ab
2
Elementary partonic cross sectioncan .~ __ (0) n s A(D) s\ 2 N
be computed in perturbation theory Oab = O 4p 2 ab 2 O, T -
6(100%) 0OQ0%) O(5%)
LO NLO NNLO
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Hard Scattering: higher orders at work!

pp—~H+X 13 TeV, PDFALHC15, pp=pg=m /2

ATLAS*

Melnikov (2002); Ravindran

8

Passarino et al (2008)
de Florian, MG (2008, 2012)

o(pp—H+X)[pb]

LO

8

: CMS NNLL+NNLO QCD+NLO EW N3LO QCD+NLO EW
50 | *
f NLO QCD \
or \ Anastasiou et al. (2016)

Harlander, Kilgore (2002); Anastasiou,

et al (2003)

Catani, de Florian, Nason, MG (2003)

July 22 |

Higgs boson discovery: emblematic case of the importance

of higher-order corrections

Basically, LO ruled out by experiment

using pseudo data with nominal top mass
m, = 174.3 GeV

TH. ACC. m: | 2]
NLO+PS+MS 174.481073[5.0]

LO+PS+MS  175.987083[16.9

NLO+PS  175.43107%[29.2

LO+PS 187.9010-0[428.3

fNLO 174.4110:72[96.6]
fL.O 197.3170:52[2496.1]

Extracting theory parameters from
measurements can depend on the "theory
model” employed, including the perturbative
order used!
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Hard Scattering: LO & Monte Carlo integration

69 = Jdd)nlMB(CDn) B

Integration becomes soon intractable with analytical methods
e high-dimensional integration scaling as 3n — 4

e experimental requirements (fiducial volume), differential
distributions, jet clustering, isolation...

MONTE CARLO integration as weighted average over a sample of events {®',}:' | in phase space

1 . . .
<0>= Jdd)n | My(@,) P Fy(@,) =~ Y (i) | My(@)) [ F(@))

if the event lie in the j-th bin of a
multi-dimensional histogram {/,}
then increase i; = h; + w'

@ = (p!,....p)
wi = J(PL) | My(DL) | FU(D!
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Hard Scattering: @ NLO

At LO numerical approach straightforward as there are no exceptional configurations (may require a suitable

definition of the cross section)

<0>= Jd@n (| Mg(®,) [*+2R (M M) (D) | FI(D,) + Jdcan | My(®,, )| FI (@, )

UV renormalised virtual amplitude: Real emission amplitude:

divergent in infrared and /or collinear divergent upon integration over phase
(IRC) limits exposed as explicit poles space when two massless partons

in dimensional regularisation become collinear and /or one parton

become soft

BN and KNL theorems ensure cancellation of divergences for IRC-safe observables O, but requires an analytical
treatment of the integration which becomes soon intractable
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Hard Scattering: NLO

At LO numerical approach straightforward as there are no exceptional configurations (may require a suitable

definition of the cross section)

<0>= Jd@n (| Mg(®,) [*+2R (M M) (D) | FI(D,) + Jd(an | My(®,, )| FI (@, )

UV renormalised virtual amplitude: Real emission amplitude:

divergent in infrared and/or collinear divergent upon integration over phase
(IRC) limits exposed as explicit poles space when two massless partons

in dimensional regularisation become collinear and /or one parton

become soft

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?
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Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

@ NLO
* toy-model example
e FKS approach
e CS approach
@NNLO
e anatomy of the complications

Remarks
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Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

@ NLO

* toy-model example
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Toy model @ NLO: inclusive calculation

Consider a toy model of a NLO calculation with only one singular (soft) region

- the Real phase space is given by the one-dimensional interval [0,1] and the Real matrix element develops a
logarithmic singularity as x — 0 (soft limit) regulated in dimensional regularisation

- the Born (and Virtual) phase space is fully constrained (for example by momentum conservation)

A | —€ 1—e 1
Oy = B . :deA+Cx= Ax :Cx assume ¢ < 0
€ K 1+€ ] —
0 X € € 0
A
= FC + O(e)
€

0=lim[0V+GR] =?/ + B ?/I C=A+ C | finite!
c—( € €

Commenks I - E—

® Virtual contribution: integration over the loop momentum leads to explicit poles in €

* Real contribution: poles in € arising from phase space integration

e Analytic cancellation of poles
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Toy model @ NLO: let’s go differential!

Consider a toy model of a NLO calculation with only one singular (soft) region

- (0 is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a
collection of requirements (acceptance, jet algorithm, isolation)

- the expectation value for O is obtained considering the differential cross section as probability distribution

A A ' A+C (%)
<0 >= ( | B) F:(0) +J A XF@(x) F;(x) is the
€

yl+e measurement function
0 associated to O

Iim F @(X) =F @(O) IRC condition for F @(x)

x—0

The integral can be hard (impossible?) to do analytically for a generic measurement function

Numerical (Monte Carlo) integration would be a more flexible solution.
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Toy model @ NLO: let’s go differential!

Consider a toy model of a NLO calculation with only one singular (soft) region

- (0 is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a
collection of requirements (acceptance, jet algorithm, isolation)

- the expectation value for O is obtained considering the differential cross section as probability distribution

A A ' A+C (%)
<0 >= ( | B) F:(0) +J A XF@(x) F;(x) is the
€

yl+e measurement function
0 associated to O
lim Fg(x) = Fg(0) IRC condition for F(x)

x—0

The integral can be hard (impossible?) to do analytically for a generic measurement function

Numerical (Monte Carlo) integration would be a more flexible solution.

ISSUE: (efficiently) handle the singularity in € in a numerical scheme

IDEA: split the real integration into a complex but integrable piece (to be performed numerically) and a
divergent but simple one (to be performed analytically) in order to achieve the analytical cancellation of the €

poles
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Toy model @ NLO: subtraction

Consider a toy model of a NLO calculation with only one singular (soft) region

- (0 is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a
collection of requirements (acceptance, jet algorithm, isolation)

- the expectation value for O is obtained considering the differential cross section as probability distribution

SUBTRACTION: the art of adding zeros Counterterm
0 * encodes the divergent behaviour
1 A+ Cx 1 A+ Cx -~ . integral independent from £
dx Fr(x) = [ dx Fr(x) — FA(0)+F4(0)] e simple enough for analytical
[ 0 xl+e =0 0 x1+e [ © © ? ] integration
LA+ Cx LA+ Cx
= | dx Fp(x) — Fa0)|+F;0) | dx
Integrable, can be performed 0 x1+e 0 xl+e
numerically |
A+ Cx A
= | dx [Fs(x) — Fp(0)]+ - C ) Fz(0)+0(e)
0 X €

Integrated Counterterm: can be
combined with the virtual contribution
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Toy model @ NLO: subtraction

Consider a toy model of a NLO calculation with only one singular (soft) region

- (0 is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or a
collection of requirements (acceptance, jet algorithm, isolation)

-~ the expectation value for O is obtained considering the differential cross section as probability distribution

SUBTRACTION: the art of adding zeros

I
<0> = (%"‘B) F6(0)+J dXA_I_Cx [F@(x)—F@(O)]+< ;)/ | C) F;(0)
€

0 X
LA+ Cx
=B+ C)F;0)+ J dx » [F@(x) — F@(O)]
0
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Toy model @ NLO: subtraction

SUBRTRACTION: the art of adding zeros

1
<0 > =(B+C)F@(O)+J dxA _;CX [F@(x)—F@(O)]
0

The calculation is reorganised in a such a way that

e the cancellation of (infrared and collinear) singularities between real and virtual contributions occurs analytically

e the complicated phase space integrals which encode the dependence upon the measurement function can be
performed numerically

ISSUE: (efficiently) handle the singularity in € in a numerical scheme /

IDEA: split the real integration into a complex but integrable piece (to be performed numerically) and a
divergent but simple one (to be performed analytically) in order to achieve the analytical cancellation of the €

poles
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Toy model @ NLO: subtraction

SUBRTRACTION: the art of adding zeros

1

. A+ Cx
< 0> =(B+C)F@(O)+J dx [F@(x)—F@(O)]
0 X
Challenges

1.00

050 * loss of precision due to float arithmetic: large

cancellation between events and counter-events
near the singular limit

(numerical stability of amplitudes, introduction
of technical cutoff)

0.10
0.05

0.01 * mis-binning: the weights of a pair event/

counter-event may fall into two ditferent bins.
Required more statistics.

At NLO it is usually under control, at higher
orders it may represent a sever problem

11F
1.0 =
0.9}
0.6}

0.5F
04F
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Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

e FKS approach
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd¢n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R((Dn+1)Fg+l((Dn+1)

B = \MB\z,V=2§R(MVM;§),R= ‘MR‘z v

IDEA from the toy model: use the F?l,u,s F?res&ripﬁcm to generate counterterm!

1 1
J 2 X p ) = FA(0)] = J dx (A i Cx) F (%)

0 A 0 A

Consider a process with only one massless parton at the lowest order, for example the electroweak top decay
t - W+ b with a massless bottom quark

The real emission processes is t = W + b + g. Then, the singular limits are

— gluon becoming parallel to the bottom quark (collinear limit)

— gluon becoming soft (soft limit)
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd¢n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

> > %4
Introduce FKS parametrisation for the radiation phase space / I
(frame dependent; standard choice is the partonic centre of mass frame of the
real configuration)
242 0
q)rad — 5 — a . y —
Vs b
soft limit, & — 0 collinear limit, y — 1
dd— 1 kg 1 | 1 q 1—e€
AP, ~ —o = SOk sin'= 0d0aQ > = — (=) &AL = ) dydQ
8

d=4—-2¢, dQ"? = sin*pdpdQi—
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd®n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

B = \MB\z,V=2§R(MVM;§),R= ‘MR‘z v

Introduce FKS parametrisation for the radiation phase space
(frame dependent; standard choice is the partonic centre of mass frame of the
real configuration)

AP, ~ E-%dE(] — y)edy 0

for simplicity, neglect the non

phase space vanishes as & in the soft £ — 0 singular term (1 +4 y)~°

Real phase space parametrisation (momentum mapping) in terms of Born and radiation variables: @, = @,(Dy, D.. ;)

Jd®n+l — [dcbndq)rad ™~ Jdan(fa Ys ¢9 (I)n)fl_zedé(l o y)_edy

Jacobian of the momentum mapping
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd¢n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

2 ) %%
The real matrix element squared behaves in the singular limits as / g
1 1
R ~ >
=1 —y 0
Then we can rewrite the real emission contribution to the observable as b

Jd@nﬂR(@nH)Fg“(chH) ~ [d@n[e:z(l = WRFZHE™ 72 dE(1 — y)'~“dy

with the term in square bracket integrable in four dimensions
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd¢n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

2 . /4
Use the plus prescription: / g
this is achieved by using the following expansions in the space of distributions
1726 = — i5(5) | ( : ) — 2¢€ <1n_§) + O(e?) 0
2e s/, s /. h

—€

1
(1—y)y 1= — 5(1—y)+(1 ) + O(¢)

€

with the standard definitions (g is a generic test function)

I 1 I — (0 I | I — (0 I 1 I — o(1
jd&(—) g<¢=>=J 08 =80 Jd&(“—‘f) g<<f>=J e85 =80 | . j dy( ) g<y>=J a8~ 8
0 S + 0 & 0 & + 0 S ~1 1 -y + ~1 11—y
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = J'dq)n[B((Dn) T V((Dn)]F%(q)n) + qu)n+1R(q)n+l)Fg+l(q)n+1)

= |Mg|*,V = 2R(MyM%),R = | M|

Use the plus prescription = g(&,y; D))
1 -1 ——
(1 =y)'=edy | &177dEg*(1 = y)JRFL

] o)
J

d®, \R(P, )F gﬂ(q)nﬂ) ~ d(I)

1

) 1 1 1 In
= d<I> (1 —y)'~<dy ——g(O,y,CI>)+J dé | — — 26—
i 2€ 0 E
1— — ¢l 1 f
= dCD 13 J dé <——2€—> g1, D, )]——
€ Jo ¢ ¢ +

Finite in four dimensions
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Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd®n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

B =|My|*,V=2RM,M),R = | M|

Use the plus prescription

. . 21—6 y—¢€ 1
d(Dn+1R(q)n+l)Fg+l((Dn+l) ~ dq)n{ g(()’l’q)n) J dé

€2 €

TG

1

T

1. Counterterms and overlapping of soft and collinear singularities

1 1
|
—1 J()

e

1) (i5) wenoo=] of
;) \15S +g V@)= dy |

dg

o] 1
gL )] ——1| dy ( 1 ) g(0,y; D,)
J -1 — Y/,

Finite in four dimensions

b g€y, @) — g0y, ®,) — g 1;®,) + g(0,1; @)

c(1=y)

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore 15



Subtraction @ NLO: FKS in two steps (step 1)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

< @ > = Jd®n[B(¢n) T V((I)n)]F%(q)n) + qu)n+1R(q)n+1)Fg+l(q)n+1)

B =|My|*,V=2RM,M),R = | M|

Use the plus prescription

. | § 21—6 N—¢€ 1 1 lné "1 1
dCDnJr11’3(CI)n+1)FgJr (D, ) ~ |dD, > g2(0,1; D, ) déE|\ ——2e— | g 1;D)] ——| dy 1=y g2(0,y; D )
: : + J—1 B

€ €

1 1 1 1
+J dyj dé (—) (1 ) gy, ®,)
_ 0 + —Y/ .

2. In the singular limits, no dependence on the IRC measurement function (as in the toy model) and universality thanks to
factorisation properties of QCD matrix elements (that can be computed using eikonal and collinear approximations)

Finite in four dimensions

1

lim g(&, y; @,) = F(®, )J(0,y; @ )11m [£2(1 = y)R,] im} 85, y; @) = F (D, )J(0,1; @ )hm [£°(1 — y)R,]
&—0 ~
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Subtraction @ NLO: FKS in two steps (step II)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

<0>= Jd(bn[B(CI)n) + V(Q,)IFL(®,) + JdCIDHHR(CDnH)Fg“(CDnH)
B =|Mg|*,V=2RWM,M*),R = | M|’

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ?
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Subtraction @ NLO: FKS in two steps (step II)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

<0>= Jd(bn[B(CI)n) + V(Q,)IFL(®,) + JdCID,ZHR(CDnH)Fg“(CDnH)
B =|Mg|*,V=2RWM,M*),R = | M|’

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ?

The #KS Froj@.«tﬂow the art of writing one in useful ways (partition et impera)

L= ) wy @), Ry @) = wy(®@, PR(D,,)
i#]
with i, j run over the final-state partons in the n + 1 phase space. The projector w;; satisfies

limw.=1,limw; = 1and lim w;; = 1 (collinear limit of i, j, soft limit of i, soft limit of j)
ki E—0 Y E~0 7

, smoothly vanishes in all other collinear limits, lim w,; = 0 if (I, m) # (i, j), and all other soft limits, lim w;, = 0 if

o kill ke, ! E~0 !
[ & {1,j}
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Subtraction @ NLO: FKS in two steps (step II)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

<0>= Jd(bn[B(CI)n) + V(Q,)IFL(®,) + JdCID,ZHR(CDnH)Fg“(CDnH)
B =|Mg|*,V=2RWM,M*),R = | M|’

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ?

The #KS Froj@.«tﬂow the art of writing one in useful ways (partition et impera)

L= D) wy®@,), Ry @) = wy(®, DR(D,, )
iF]
Standard construction of the projectors

, . A . : . a b
e define distances dl-j such that dl-j = 0 if (and only if) &; || k] Typically, dl.j = (El-Ej) (1 —cos Hij)

e then, define 1/ dij
wW.. =

i
z I£m 1/ dlm
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Subtraction @ NLO: FKS in two steps (step II)

For a process with n parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest
order, in general we have

<0>= Jd(bn[B(CI)n) + V(Q,)IFL(®,) + Jd@nﬂR(@nH)Fg“(@nH)
B =|Mg|*,V=2RWM,M*),R = | M|’

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ?

The #KS Froj@.«tﬁow the art of writing one in useful ways (partition et impera)

I#]

dq)n+1R(q)n+1)Fg+l((Dn+l) X1

dD, | R, ) (D, 1) X ) wi( @)
.J vy
. " Sum of regions with one collinear and one
Z d®,, R (D, ) F'*i(® , ) softsingularity at time! Step 1 can be applied
i 0 for each region
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Subtraction @ NLO: FKS in two steps (recap)

STEY I - The plus F?rQSCTEF?ROM: FKS parametrisation (momentum mapping)

” 2 1-¢ n—e (1 1 1 1 ! 1
n+1 [ ] né [ ] [ ]
d(I)nHR(CI)nH)FA (<I>n+1) ~ Jd@n 2(0,1; D ) J dé (— — 26—) g(¢&,1; D )] —— dy ( ) 2(0,y; D )

O 6”

STE? 11 - The FKS prajecﬁaw the art of writing one in useful ways (partition et impera)

~ 1

Finite in four dimensions

70

d®,, | R(®, Y@, ) X 1 = [dD, (RO, YLD, ) X ) wy( @)
) : i#]

i Sum of regions with one collinear and one
Z d®, | RA(D, )F g“l(@nﬂ) soft singularity at time! Step 1 can be applied
i for each region

Greneral subbraction algorithm: thanks to factorisation properties of QCD matrix elements in the singular
limits, all the necessary (integrated) counterterms can be computed once and for all in a process independent way
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Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

e CS approach
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Subtraction @ NLO: Catani-Seymour like approach

& OAL: design approximants of the real matrix element in d dimensions that
e reproduce the correct singular behaviour in all collinear and soft limits
 are defined in the entire phase space

 can be constructed algorithmically

e can be integrated analytically over the d-dimensional 1-particle radiation phase space

y
v

&

'

IDEA: the singular behaviour of the matrix elements is universal and given by known factorisation formulae
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Subtraction @ NLO: Catani-Seymour like approach

Consider a simple example: y* = g(p,) + g(p,)

Factorisation of the real matrix element in the relevant limits

. k% n# k% nH
a) gluon collinear to the quark: pf‘ = z;p" + kg — : pg‘ = (1 —z)p" — kg —
71 2p-n l—2z,2p-n
P1 I )
9 1 1 + 77 ,
/V — 877:/4 aSCF C13 — ./V €(1 — Zl) |My*_>qq(p1 +p3ap2)|
2pip3 |14 _
Ds k% n# k% nH
b) gluon collinear to the antiquark: p)' = z,p* + ki, — , Py =U—)p" -k —
2 2p-n l—22p-n
_1 e _
%) 2
C23 — e/V 6(1 _ZZ) |My*—>qq(pl’p2+p3)|
2py-p3 [ 1 -1
%) - -
c) soft gluon: p; — 0
P P> 2
S3 — '/V |My*—>qq(plap2) |
P1:P3P2P3
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Subtraction @ NLO: Catani-Seymour like approach

Consider a simple example: y* = g(p,) + g(p,)

Factorisation of the real matrix element in the relevant limits

[t is tempting to write the approximant as

pl A1=C13+C23+S3

but

00000000 D3 1. the formula is incorrect in the simultaneous soft and collinear limits because of
double counting (overlapping singularities)

2. the expressions C;3, Cy; and $; cannot be evaluated away from their
corresponding singular regions as momentum conservation and mass shell
)2 conditions are not satisfied and collinear fractions z; , are not well defined

Solutions given by
1. matching

2. extension
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Subtraction @ NLO: Catani-Seymour like approach

Consider a simple example: y* — g(p,) + g(p-)

Factorisation of the real matrix element in the relevant limits

1. Matching (analogously in the limits collinear to the anti quark)

1 2
Ilim Cj, =N (M. (p1,p2)|° p;—> 0~z — 1
P1 pim0 2p1psl—z 7N ’ 1

pilips P,z —2)p-p3
1 274 |

|My*—>qq(p19p2) |2
pillpsipr~zip,p3~ A —2)p

= M. (plp2)|> = C\5S
Ps 2py-p3 (1 —2zp) ro 1
Pillps
P> | 1 [ 2 2z
Iim (Ci; — Ci38;) =N (M., -(p1l,p2)|” lim =0
ps—0 2py -3 g-1 | 1=z 1=z

A; = Ci3+ Cp3 + 55 — G353 — (35,

L — I —
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Subtraction @ NLO: Catani-Seymour like approach

Consider a simple example: y* = g(p,) + g(p,)

Factorisation of the real matrix element in the relevant limits

1. Notice that defining instead

1 2
lim Cyz = A (M. (pl,p2)|* = S:C
P N T P

pilips P,z —2)p-p3
1 274 |

2
| My*eqé(plapz) |

= My i(p1p2) |
P 2p-ps (1 —z) 777
lim (Cj; —$;C3) =0 by definition
p;—0
= i (Ss — $:Coi) = 1M (olp) 2|2 N x
im (S5 — = Lag(PLD
pillp3 P 2p1-py T -z 1=z
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Subtraction @ NLO: Catani-Seymour like approach

Consider a simple example: y* = g(p,) + g(p,)

Factorisation of the real matrix element in the relevant limits

00000000 P3

P>

2. Extension requires

Momentum mappings from real to Born momenta for the evaluation of the
reduced Born Matrix element. They must have the following properties

e ensure momentum conservation and mass shell of all particles

e recover the expected behaviour in the corresponding singular limit

e (lead to exact factorisation of the phase space)

{ﬁ}c 1 internal consistency
N between

Pl } overlapping regions

Similarly, one needs to consistently extend the definition of collinear fractions z, ,

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore 25



Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* = g(p,) + g(p,)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

~ o~ 2 ~r o~ 2
pl Al — V13,2(p13p29 p3) ‘ My*aqq(pDPZ) ‘ + V23,1(p19p2’ p3) ‘ My*eqq(pl’pZ) |
A dipole Vj;; include a pair (i, j), interpreted as coming from a splitting process
ij — i+, and a “spectator” parton that absorbs the recoil of the sphttmg and
P3 ensures the correct treatment of colour and spin correlations (trivial in the considered
example)
P>
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Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* = g(p,) + g(p,)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

~ o~ 2 ~r o~ 2
pl Al — V13,2(p13p29p3) ‘My*aqq(pDPZ) ‘ + V23,1(p13p29p3) ‘My*eqq(pDPZ) |
Momentum mapping: {p;, j, P} = {Djj» Pi
00000000 P SHo_— M 7 7
3 momentum conservation P 4] P; TP J Tap k
SHo B — M M H = (1 — H
p;t P, =p; +p +p, p,=U—-a)p
9 Pi - P;
P> mass-shell relation P = 0 = a=
(pi + Pj) - Pk
a pi ) p]

Usual a is replaced by y;; , = " (x:p Dt i D+ D
— i " Pj T Pi* PrP Tj Dk
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Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* = g(p,) + g(p,)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

~ o~ 2 ~r o~ 2
Al — V13,2(p13p29p3) ‘My*aqq(pDPZ) ‘ + V23,1(p1ap29p3) ‘My*eqq(pDPZ) |

Momentum mapping: {p;, Djs Pt — {ﬁgaﬁk}
00000000 P3

N ylj,k Pi- pj
p.=pl+pr p Viik =
A e T M PP+ i kP D
]
P> Pt = pr
X 1 — yij,k r

In the relevant soft/ collinear limit p; - p; — 0, y ~ 0 and then, as expected,

~/

H o pH H At~ PH
P ~pl'+pls Pi~D,
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Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* = g(p,) + g(p,)

00000000 P3

P>

pt = pt + p¥ #
p;=p; D [y, P,
1
P = ph
X 1 — yij,k r
D;* Dk p;* Dy
< —

(Pi+p) Px  Pij Pk

The approximant is written as a sum of dipoles

Momentum mapping: {p;, Djs Prt — {ﬁgaﬁk}

Y ijk =

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

~ o~ 2
Al — V13,2(p13p29p3) ‘My*aqq(pDPZ) ‘ + V23,1(p13p29p3) ‘My*eqq(

P Pj

~/ =/

2
p19p2) |

Pi* P+ Di* PxP i Pk

collinear limit

2Pk

Pi * Pk

<

z.— 1

(pi + Pj) - Pr

l

soft limit

> 7.

C
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Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* — g(p,) + g(p-)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

~ o~ N2 ~/ ~/\ |2
pl Al — V13,2(p1ap29 p3) | My*aqq(pDPZ) ‘ + V23,1(p19p2’p3) ‘ My*eqq(p,l’pé) |
Dipole functions: start from eikonal approximation and apply partial fractioning
P3 -
Di * Px Pi* P Pi* Py 2
S = N—— (M s> = | [ Mg
Di* Dj Pk * P PP Pit PP (Pit DD P P
P2 Sii St
only collinear to p; only collinear to p,
contributes to V;; ; contributes to Vi, ;
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Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* — g(p,) + g(p-)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

~ o~ 2 ~) o~ 2
P1 Al — V13,2(p1ap29p3) |My*—>qq(p19p2) ‘ T V23,1(p1’p2’p3) ‘My*%qq(p/l’pé) ‘
Dipole functions: match C;; and §;; ; (smooth interpolation)
p 1 i 1 + Ziz ] pl, - D
3 Cl] =N 6(1 o Zi) |My*—>qc'1 |2 Sij,k =N : |My*—>qq |2
2pirp | -5 _ pi - p; (pi+ Ppi) - pj
1 2(1 =y, )z
= M)
i Pi*Pj L — zi(1 — yzj,k)
1 [1+22 2(1 =y, )z, 25
Vik=Ci+Sjp— CySin =N e(1 - 7)) J (Mo’
2 p; ' Pj 1 -z 1 —z(1 - )’ij,k) 1 -z
- | > (1+z) —e(l >_ (M. 5 °
— ) — €\l — 5 %507
2 p; Pi | 1 —z(1 - yzj,k) ] o

Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore 29



Subtraction @ NLO: Catani-Seymour

Consider a simple example: y* — g(p,) + g(p-)

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles

d®(p;, pj s q) = dP(Py;, Dis QAP gD Pi)

(2p;; - pp' ¢ dQd-2

P1
Integrated counterterm:
P3 exact factorisation
CZ(I)rad(j5 ij° ]5 k) —
P>

1672

(271- 1-2¢

X (Z(1 = 2™ =y Vs

dq)rad(ﬁij» Pr) Vij,k —

Qg 1

2r I'(1 —¢€)

(

A7 €F3(1—€)C
2p; B ) T =3e) *

1

51,5 |

~ o~ 2
Al — V13,2(p1’p29p3) |My*—>qq(plap2)‘ + V23,1(p19p29p3) ‘My*eqq(plapz

dZid)’ij,k@(Zi(l — Zi))®(yij,k(1 — yij,k))

Il 3+4+¢€

_62

e 2(1 - 3¢)
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Subtraction @ NLO: NLO revolution!

FKS subtraction CS dipole subtraction

e momentum recoil distributed among all e momentum recoil absorbed by one particle
particles (global) complexity scales as numerical complexity scales as
nX(n—1)x1~n? nxn—1)xmn-2)~n’

e construction starts from collinear radiation e construction starts from soft radiation

* general algorithm * general algorithm

e automated in different (public) programs: e automated in different (public) programs:
POWHEG BOX, MadGraph5_aMC@NLO ... Sherpa, Helac-NLO, MadDipole, Matrix ...

technicalities not covered in this talk
(together with identified incoming hadrons)

Numerical evaluation of tree-level (including colour- and spin-correlated) and 1-loop QCD (and EW and BSM) virtual
amplitudes automated in diﬂfﬂf@.\‘@.&\& publi& generators: OpenLoops, Recola, GoSam, MadLoop, NLOX ...

Complete automation: NLO QCD (and EW) corrections to any desirable processes for
l LHC physics can be computed by pressing a button
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Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

@NNLO

e anatomy of the complications
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

A

@’

double collinear limit triple collinear limit
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

7

1
5(1 —cosd,.) € [0,1]

1. Decomposition of phase space (FKS-tnspired)

as in STRIPPER and Nested Soft-Collinear
Subtraction

] a ap
triple collinear limit: further splitting since different orderings lead s, S, Sy S,
to differs limiting behaviour from R. Poncelet
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

2. C?S--imspireci: as CoLoRFulNNLO subtraction

ONNLO = Jdd)n+2 {RRF"2—AJEF" — AFEF™T 4 J

subtract double-unresolved ~ subtract single-unresolved
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

2. CS*LMSFEI"@.&: as CoLoRFulNNLO subtraction

ONNLO = qu)mz {RRF™? — AFRFI AT FH I+ A |

+ JdCI)nH RVF’”‘+1+J AfRprHl— ARV —
1
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

2. CS*LMSFEI"@.&: as CoLoRFulNNLO subtraction

ONNLO = qu)mz {RRE™? = ASRFI = AP+ AT |

+Jdc1>,,l+1 RVF™! +J AfRFr {:" kV]

Fn

+Jdc1>n VV+J

R A
[A2 — A12 -|-] + J ;‘
2 1
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

2. C‘Smmspiredz as CoLoRFulNNLO subtraction

Matching: much more involved; since limits usually do not commute, care must be taken in the choice of ordering

ns;

ja I ia;jp

Az — Z { [C + C.C(,jﬁ + CSia;j + Sl]] — [Cija N CSia;j + Cia;jﬂ N CSia;j + Czja N Sl] + CSia;j N Sl] + C
i

+ [Cija N C3ip N Sjg + Cigyjp N C3g N Sy ] }
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Subtraction @ NNLO: anatomy of “complications”

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem

double collinear limit triple collinear limit

2. C‘Smmspiredz as CoLoRFulNNLO subtraction

Extension: requires momentum mappings that respect factorization and delicate structure of cancellations in all
limits

{p}n+1 — {ﬁ}n
{p}n+2 — {ﬁ}n

Integration: can be tedious and non-trivial
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Subtraction @ NNLO: anatomy of “complications”

Double real: outliers and mis-binning are more severe at NNLO

L of e

double collinear limit triple collinear limit

Parallelisation is crucial to keep running time
manageable

[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '16]

I §
N @

Averaging the results obtained in numerous
smaller size samples can lead to large errors
because of outliers from mis-binning

NNLO /NLO

—h

Careful treatment of outliers for obtaining
smoother distributions without introducing

biases 4 -3 -2 -1 0 1 2 3 4
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Subtraction @ NNLO: anatomy of “complications”

Real=-virk

numerical stability is an important issue, especially when probing unresolved regions

Progress in one-loop providers very important

e automated generation of matrix elements for

relatively difficult processes (in QCD and in
EW)

e stable numerical evaluation suitable for their
integration in a NNLO calculation

Rescue system

double precision — hybrid precision
O(2 — 10) penalty factor in evaluation time

double precision — quad precision
O(10 — 100) penalty factor in evaluation time

5 coll

intial-state collinear radiation in gg — ttg at O(ag)

[Buccioni, Lang, Lindert, Maierhéfer, Pozzorini, Zhang, Zoller '19]

QQQAOQQQQ

¢ ¢

OL1+CutTools dp
OL1+Collier dp
OL2 hp mode 2
OL2 gp

—36

—32

—28

—24

—20

16 —12
accuracy A

-8
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Subtraction @ NNLO: anatomy of “complications”

Numerical complexity of NNLO calculations: medium/large size HPC clusters required

e typical runtime for 2 — 2: O(100k) CPU hours

V +J, di-jet, ... > VVIRV:RR ~ 1:20:100

e extreme 2 — 3 case: O(100M) CPU hours

tri-jet, ... > VV:RV:RR ~ 1:100:200
o dcos @
> 1-2E H;, > 1000 GeV [ATLAS arXiv:2301.09351] 3 ~ —— Data
o 1.1E — -- LO
l_E e pa—
~ 1 _E ............... = o= NLO
m e p—
B OO et ] = == NNLO
Q08 -
0.8 -0.6 ~0.4 0.2 0 0.2 0.4 0.6 0.8
CoSs ¢ 14

Different subtraction schemes available on the market with their strengths and limitations but yet ne general
fframewark*s as at NL{ (alot of activities in this direction)
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Remarks

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while
retaining the flexibility of the numerical approach?

- Presentation limited to the “standard approach”: start from real radiation, introduce counterterms, integrate them
over radiation phase space, combine with lower-multiplicity contribution

= Alternatively, real and virtual can be integrated simultaneously, for example, using loop-tree duality relations

- Integration of counterterms, especially at NNLO, can be highly non-trivial;
Methods as reverse unitary can be exploit to transform phase space integrals into (multi)-loop ones,
so that multi-loop techniques can be applied to perform this task
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