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σ(h1 + h2 → V + X) = ∑
ab

∫ dx1dx2 fa/h1
(x1, μF)fb/h2

(x2, μF) ̂σab→V+X( ̂s, μR) + …

Radiative corrections for LHC phenomenology
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Hadron-hadron collisions: very complicated processes probing multi-scale nature of QFT in perturbative and 
non-perturbative regimes 
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Hard Scattering: fixed Order Predictions

2

σ(h1 + h2 → V + X) = ∑
ab

∫ dx1dx2 fa/h1
(x1, μF)fb/h2

(x2, μF) ̂σab→V+X( ̂s, μR) + …

̂σab = ̂σ(0)
ab +

αS

2π
̂σ(1)
ab +( αS

2π )
2

̂σ(2)
ab + …Elementary partonic cross section can

be computed in perturbation theory

𝒪(100%) 𝒪(5%)𝒪(20%)

LO NLO NNLO
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Hard Scattering: higher orders at work!

Higgs boson discovery: emblematic case of the importance 
of higher-order corrections

Basically, LO ruled out by experiment 

Extracting theory parameters from 
measurements can depend on the "theory 
model” employed, including the perturbative 
order used! 

[Grazzini, CERN QCD seminar, 2023]

using pseudo data with nominal top mass 
 GeVmt = 174.3

[Frixione, Mitov, 2014]
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Integration becomes soon intractable with analytical methods
• high-dimensional integration scaling as 
• experimental requirements (fiducial volume), differential 

distributions, jet clustering, isolation…

3n − 4

4

̂σ(0)
ab = ∫ dΦn |MB(Φn) |2

< 𝒪 > = ∫ dΦn |MB(Φn) |2 Fn
𝒪(Φn) ≃

1
N ∑

i

J(Φi
n) |MB(Φi

n) |2 Fn
𝒪(Φi

n)

Hard Scattering: LO & Monte Carlo integration

MONTE CARLO integration as weighted average over a sample of events  in phase space   {Φi
n}N

i=1

Φi
n = (pi

1, …, pi
n)

wi = J(Φi
n) |MB(Φi

n) |2 Fn
𝒪(Φi

n)

if the event lie in the -th bin of a 
multi-dimensional histogram  
then increase 

j
{hl}

hj = hj + wi
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At LO numerical approach straightforward as there are no exceptional configurations (may require a suitable 
definition of the cross section) 

Hard Scattering: @ NLO

< 𝒪 > = ∫ dΦn [( |MB(Φn) |2 +2ℜ(MVM*B )(Φn)] Fn
𝒪(Φn) + ∫ dΦn+1 |MR(Φn+1) |2 Fn+1

𝒪 (Φn+1)

UV renormalised virtual amplitude: 
divergent in infrared and/or collinear 
(IRC) limits exposed as explicit poles 
in dimensional regularisation 

Real emission amplitude: 
divergent upon integration over phase 
space when two massless partons 
become collinear and/or one parton 
become soft

BN and KNL theorems ensure cancellation of divergences for IRC-safe observables , but requires an analytical 
treatment of the integration which becomes soon intractable

𝒪
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At LO numerical approach straightforward as there are no exceptional configurations (may require a suitable 
definition of the cross section) 

Hard Scattering: NLO

< 𝒪 > = ∫ dΦn [( |MB(Φn) |2 +2ℜ(MVM*B )(Φn)] Fn
𝒪(Φn) + ∫ dΦn+1 |MR(Φn+1) |2 Fn+1

𝒪 (Φn+1)

UV renormalised virtual amplitude: 
divergent in infrared and/or collinear 
(IRC) limits exposed as explicit poles 
in dimensional regularisation 

Real emission amplitude: 
divergent upon integration over phase 
space when two massless partons 
become collinear and/or one parton 
become soft

BN and KNL theorems ensure cancellation of divergences for IRC-safe observables , but requires an analytical 
treatment of the integration which becomes soon intractable

𝒪ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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@ NLO
• toy-model example
• FKS approach
• CS approach

@NNLO
• anatomy of the complications

Remarks

Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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@ NLO
• toy-model example
• FKS approach
• CS approach

@NNLO
• anatomy of the complications

Remarks

Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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Toy model @ NLO: inclusive calculation 

6

Consider a toy model of a NLO calculation with only one singular (soft) region
- the Real phase space is given by the one-dimensional interval  and the Real matrix element develops a 

logarithmic singularity as  (soft limit) regulated in dimensional regularisation 
- the Born (and Virtual) phase space is fully constrained (for example by momentum conservation)

[0,1]
x → 0

Comments 

• Virtual contribution: integration over the loop momentum leads to explicit poles in   

• Real contribution: poles in  arising from phase space integration
• Analytic cancellation of poles

ϵ

ϵ

σV =
A
ϵ

+ B σR = ∫
1

0
dx

A + Cx
x1+ϵ

= [−A
x−ϵ

ϵ
+ C

x1−ϵ

1 − ϵ ]
1

0

= −
A
ϵ

+ C + 𝒪(ϵ)

σ = lim
ϵ→0

[σV + σR] =
A
ϵ

+ B −
A
ϵ

+ C = A + C

assume  ϵ < 0

finite!
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Toy model @ NLO: let’s go differential!

7

Consider a toy model of a NLO calculation with only one singular (soft) region 
-  is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or  a 

collection of requirements (acceptance, jet algorithm, isolation)     
- the expectation value for  is obtained considering the differential cross section as probability distribution

�̂�

�̂�

 is the 
measurement function 
associated to 

F�̂�(x)

�̂�
< �̂� > = ( A

ϵ
+ B) F�̂�(0) + ∫

1

0
dx

A + Cx
x1+ϵ

F�̂�(x)

lim
x→0

F�̂�(x) = F�̂�(0) IRC condition for  F�̂�(x)

The integral can be hard (impossible?) to do analytically for a generic measurement function 
Numerical (Monte Carlo) integration would be a more flexible solution. 
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Toy model @ NLO: let’s go differential!

7

Consider a toy model of a NLO calculation with only one singular (soft) region 
-  is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or  a 

collection of requirements (acceptance, jet algorithm, isolation)     
- the expectation value for  is obtained considering the differential cross section as probability distribution

�̂�

�̂�

 is the 
measurement function 
associated to 

F�̂�(x)

�̂�
< �̂� > = ( A

ϵ
+ B) F�̂�(0) + ∫

1

0
dx

A + Cx
x1+ϵ

F�̂�(x)

lim
x→0

F�̂�(x) = F�̂�(0) IRC condition for  F�̂�(x)

The integral can be hard (impossible?) to do analytically for a generic measurement function 
Numerical (Monte Carlo) integration would be a more flexible solution. 

ISSUE: (efficiently) handle the singularity in  in a numerical scheme

IDEA: split the real integration into a complex but integrable piece (to be performed numerically) and a 
divergent but simple one (to be performed analytically) in order to achieve the analytical cancellation of the  
poles

ϵ

ϵ
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Toy model @ NLO: subtraction

8

Consider a toy model of a NLO calculation with only one singular (soft) region 
-  is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or  a 

collection of requirements (acceptance, jet algorithm, isolation)     
- the expectation value for  is obtained considering the differential cross section as probability distribution

�̂�

�̂�

∫
1

0
dx

A + Cx
x1+ϵ

F�̂�(x) = ∫
1

0
dx

A + Cx
x1+ϵ [F�̂�(x) − F�̂�(0)+F�̂�(0)]

= ∫
1

0
dx

A + Cx
x1+ϵ [F�̂�(x) − F�̂�(0)]+F�̂�(0)∫

1

0
dx

A + Cx
x1+ϵ

= ∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)]+(−

A
ϵ

+ C) F�̂�(0)+𝒪(ϵ)

SUBTRACTION: the art of adding zeros 
0

Integrable, can be performed 
numerically

Counterterm
• encodes the divergent behaviour
• integral independent from 
• simple enough for analytical 

integration

F�̂�

Integrated Counterterm: can be 
combined with the virtual contribution
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Toy model @ NLO: subtraction

8

Consider a toy model of a NLO calculation with only one singular (soft) region 
-  is an infrared and collinear (IRC) observable, for example a bin of a well defined kinematical histogram with/or  a 

collection of requirements (acceptance, jet algorithm, isolation)     
- the expectation value for  is obtained considering the differential cross section as probability distribution

�̂�

�̂�

SUBTRACTION: the art of adding zeros 

< �̂� > = (A
ϵ

+ B) F�̂�(0) + ∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)]+(−

A
ϵ

+ C) F�̂�(0)

= (B + C) F�̂�(0) + ∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)]
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Toy model @ NLO: subtraction

9

SUBTRACTION: the art of adding zeros 

< �̂� > = (B + C) F�̂�(0) + ∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)]

The calculation is reorganised in a such a way that
• the cancellation of (infrared and collinear) singularities between real and virtual contributions occurs analytically
• the complicated phase space integrals which encode the dependence upon the measurement function can be 

performed numerically

ISSUE: (efficiently) handle the singularity in  in a numerical scheme

IDEA: split the real integration into a complex but integrable piece (to be performed numerically) and a 
divergent but simple one (to be performed analytically) in order to achieve the analytical cancellation of the  
poles

ϵ

ϵ
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Toy model @ NLO: subtraction

9

SUBTRACTION: the art of adding zeros 

Challenges 
• loss of precision due to float arithmetic: large 

cancellation between events and counter-events 
near the singular limit  
(numerical stability of amplitudes, introduction 
of technical cutoff) 

• mis-binning: the weights of a pair event/
counter-event may fall into two different bins. 
Required more statistics.  
At NLO it is usually under control, at higher 
orders it may represent a sever problem

< �̂� > = (B + C) F�̂�(0) + ∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)]
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@ NLO
• toy-model example
• FKS approach
• CS approach

@NNLO
• anatomy of the complications

Remarks

Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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Subtraction @ NLO: FKS in two steps (step I)

10

IDEA from the toy model: use the plus prescription to generate counterterm! 

∫
1

0
dx

A + Cx
x [F�̂�(x) − F�̂�(0)] = ∫

1

0
dx ( A + Cx

x )
+

F�̂�(x)

Consider a process with only one massless parton at the lowest order, for example the electroweak top decay  
  with a massless bottom quark  
The real emission processes is . Then, the singular limits are

- gluon becoming parallel to the bottom quark (collinear limit)
- gluon becoming soft (soft limit)

t → W + b
t → W + b + g

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2

t

W

b

g

[Frixione, Kunszt, Signer  
(1998)]
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Subtraction @ NLO: FKS in two steps (step I)

11

t

W

b

g

b

Introduce FKS parametrisation for the radiation phase space  
(frame dependent; standard choice is the partonic centre of mass frame of the 
real configuration)

θΦrad = (ξ ≡
2k0

g

s
, y ≡ cos θ, ϕ), s = p2

t = m2
t

dΦrad ∼
dd−1kg

2k0
g

=
1
2

(k0)d−3dk0 sind−3 θdθdΩd−2 =
1
2 ( s

2 )
1−ϵ

ξ1−2ϵdξ(1 − y2)−ϵdydΩ2−2ϵ

soft limit,  ξ → 0 collinear limit,  y → 1

d = 4 − 2ϵ, dΩd−2 = sind−4 ϕdϕdΩd−3

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2

[Frixione, Nason, Oleari, (2007)]
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Subtraction @ NLO: FKS in two steps (step I)

11

t

W

b

g

b

Introduce FKS parametrisation for the radiation phase space  
(frame dependent; standard choice is the partonic centre of mass frame of the 
real configuration)

θdΦrad ∼ ξ1−2ϵdξ(1 − y)−ϵdy

phase space vanishes as  in the soft  ξ ξ → 0

Real phase space parametrisation (momentum mapping) in terms of Born and radiation variables:   ΦR = ΦR(ΦB, Φrad)

∫ dΦn+1 = ∫ dΦndΦrad ∼ ∫ dΦnJ̃(ξ, y, ϕ; Φn)ξ1−2ϵdξ(1 − y)−ϵdy

Jacobian of the momentum mapping

for simplicity, neglect the non 
singular term   (1 + y)−ϵ

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step I)

12

t

W

b

g

b

The real matrix element squared behaves in the singular limits as 

θ

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) ∼ ∫ dΦn[ξ2(1 − y)J̃RFn+1
�̂�

]ξ−1−2ϵdξ(1 − y)1−ϵdy

R ∼
1
ξ2

1
1 − y

Then we can rewrite the real emission contribution to the observable as 

with the term in square bracket integrable in four dimensions

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step I)

13

t

W

b

g

b

Use the plus prescription: 
this is achieved by using the following expansions in the space of distributions

θξ−1−2ϵ = −
1
2ϵ

δ(ξ) + ( 1
ξ )

+
− 2ϵ ( ln ξ

ξ )
+

+ 𝒪(ϵ2)

(1 − y)−1−ϵ = −
2−ϵ

ϵ
δ(1 − y) + ( 1

1 − y )
+

+ 𝒪(ϵ)

∫
1

0
dξ ( 1

ξ )
+

g(ξ) = ∫
1

0
dξ

g(ξ) − g(0)
ξ

, ∫
1

0
dξ ( ln ξ

ξ )
+

g(ξ) = ∫
1

0
dξ

g(ξ) − g(0)
ξ

ln ξ, ∫
1

−1
dy ( 1

1 − y )
+

g(y) = ∫
1

−1
dξ

g(y) − g(1)
1 − y

,

with the standard definitions (  is a generic test function)g

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step I)

14

t

W

b

g

b

Use the plus prescription

θ
∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1) ∼ ∫ dΦn ∫

1

−1
(1 − y)1−ϵdy∫

1

0
ξ−1−2ϵdξ[ξ2(1 − y)J̃RFn+1

�̂�
]

= ∫ dΦn ∫
1

−1
(1 − y)1−ϵdy [−

1
2ϵ

g(0,y; Φn) + ∫
1

0
dξ ( 1

ξ
− 2ϵ

ln ξ
ξ )

+
g(ξ, y; Φn)]]

= ∫ dΦn{ 21−ϵ

ϵ2
g(0,1; Φn) −

2−ϵ

ϵ ∫
1

0
dξ ( 1

ξ
− 2ϵ

ln ξ
ξ )

+
g(ξ,1; Φn)] −

1
2ϵ ∫

1

−1
dy ( 1

1 − y )
+

g(0,y; Φn)

+∫
1

−1
dy∫

1

0
dξ ( 1

ξ )
+

( 1
1 − y )

+
g(ξ, y; Φn)}

≡ g(ξ, y; Φn)

Integrated counterterms 
to be combined with the 
virtual 

Finite in four dimensions

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step I)

15

Use the plus prescription

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) ∼ ∫ dΦn{ 21−ϵ

ϵ2
g(0,1; Φn) −

2−ϵ

ϵ ∫
1

0
dξ ( 1

ξ
− 2ϵ

ln ξ
ξ )

+
g(ξ,1; Φn)] −

1
2ϵ ∫

1

−1
dy ( 1

1 − y )
+

g(0,y; Φn)

+∫
1

−1
dy∫

1

0
dξ ( 1

ξ )
+

( 1
1 − y )

+
g(ξ, y; Φn)}

Integrated counterterms

Finite in four dimensions

∫
1

−1
dy∫

1

0
dξ ( 1

ξ )
+

( 1
1 − y )

+
g(ξ, y; Φn) = ∫

1

−1
dy∫

1

0
dξ

g(ξ, y; Φn) − g(0,y; Φn) − g(ξ,1; Φn) + g(0,1; Φn)
ξ(1 − y)

1. Counterterms and overlapping of soft and collinear singularities

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step I)

15

Use the plus prescription

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) ∼ ∫ dΦn{ 21−ϵ

ϵ2
g(0,1; Φn) −

2−ϵ

ϵ ∫
1

0
dξ ( 1

ξ
− 2ϵ

ln ξ
ξ )

+
g(ξ,1; Φn)] −

1
2ϵ ∫

1

−1
dy ( 1

1 − y )
+

g(0,y; Φn)

+∫
1

−1
dy∫

1

0
dξ ( 1

ξ )
+

( 1
1 − y )

+
g(ξ, y; Φn)}

Integrated counterterms

Finite in four dimensions

lim
ξ→0

g(ξ, y; Φn) = Fn
�̂�
(Φn)J̃(0,y; Φn) lim

ξ→0
[ξ2(1 − y)Rs]

2. In the singular limits, no dependence on the IRC measurement function (as in the toy model) and universality thanks to 
factorisation properties of QCD matrix elements (that can be computed using eikonal and collinear approximations) 

lim
y→1

g(ξ, y; Φn) = Fn
�̂�
(Φn)J̃(0,1; Φn) lim

ξ→1
[ξ2(1 − y)Rc]

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step II)

16

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ? 

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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The FKS projection: the art of writing one in useful ways (partition et impera)

1 = ∑
i≠j

wij(Φn+1), Rij(Φn+1) ≡ wij(Φn+1)R(Φn+1)

with  run over the final-state partons in the  phase space. The projector  satisfies

• ,  and  (collinear limit of , soft limit of , soft limit of )

• smoothly vanishes in all other collinear limits,  if , and all other soft limits,  if 

i, j n + 1 wij

lim
ki∥kj

wij = 1 lim
Ei→0

wij = 1 lim
Ej→0

wij = 1 i, j i j

lim
kl∥km

wij = 0 (l, m) ≠ (i, j) lim
El→0

wij = 0

l ∉ {i, j}

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ? 

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2
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Subtraction @ NLO: FKS in two steps (step II)
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The FKS projection: the art of writing one in useful ways (partition et impera)

1 = ∑
i≠j

wij(Φn+1), Rij(Φn+1) ≡ wij(Φn+1)R(Φn+1)

Standard construction of the projectors 

• define distances  such that  if (and only if) . Typically, 

• then, define 

dij dij = 0 ki ∥ kj dij = (EiEj)a(1 − cos θij)b

wij =
1/dij

∑l≠m 1/dlm

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ? 
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Subtraction @ NLO: FKS in two steps (step II)
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The FKS projection: the art of writing one in useful ways (partition et impera)

1 = ∑
i≠j

wij(Φn+1), Rij(Φn+1) ≡ wij(Φn+1)R(Φn+1)

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) × 1 = ∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) × ∑
i≠j

wij(Φn+1)

= ∑
i≠j

∫ dΦn+1Rij(Φn+1)Fn+1
�̂�

(Φn+1)
Sum of regions with one collinear and one 
soft singularity at time! Step 1 can be applied 
for each region

For a process with  parton in the final state (and, for simplicity, no identified hadrons in the initial state) at the lowest 
order, in general we have 

n

< �̂� > = ∫ dΦn[B(Φn) + V(Φn)]Fn
�̂�
(Φn) + ∫ dΦn+1R(Φn+1)Fn+1

�̂�
(Φn+1)

B = |MB |2 , V = 2ℜ(MVM*B ), R = |MR |2

The FKS parametrisation works with one collinear an one soft singularity at time

ISSUE: how to generalise the construction to more complicated processes ? 
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Subtraction @ NLO: FKS in two steps (recap)
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STEP II - The FKS projection: the art of writing one in useful ways (partition et impera)

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) × 1 = ∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) × ∑
i≠j

wij(Φn+1)

= ∑
i≠j

∫ dΦn+1Rij(Φn+1)Fn+1
�̂�

(Φn+1)
Sum of regions with one collinear and one 
soft singularity at time! Step 1 can be applied 
for each region

STEP I - The plus prescription: FKS parametrisation (momentum mapping)

∫ dΦn+1R(Φn+1)Fn+1
�̂�

(Φn+1) ∼ ∫ dΦn{ 21−ϵ

ϵ2
g(0,1; Φn) −

2−ϵ

ϵ ∫
1

0
dξ ( 1

ξ
− 2ϵ

ln ξ
ξ )

+
g(ξ,1; Φn)] −

1
2ϵ ∫

1

−1
dy ( 1

1 − y )
+

g(0,y; Φn)

+∫
1

−1
dy∫

1

0
dξ ( 1

ξ )
+

( 1
1 − y )

+
g(ξ, y; Φn)}

Integrated counterterms

Finite in four dimensions

General subtraction algorithm: thanks to factorisation properties of QCD matrix elements in the singular 
limits, all the necessary (integrated) counterterms can be computed once and for all in a process independent way
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@ NLO
• toy-model example
• FKS approach
• CS approach

@NNLO
• anatomy of the complications

Remarks

Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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Subtraction @ NLO: Catani-Seymour like approach
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IDEA: the singular behaviour of the matrix elements is universal and given by known factorisation formulae  

GOAL: design approximants of the real matrix element in  dimensions that
• reproduce the correct singular behaviour in all collinear and soft limits
• are defined in the entire phase space
• can be constructed algorithmically 
• can be integrated analytically over the -dimensional 1-particle radiation phase space

d

d
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Subtraction @ NLO: Catani-Seymour like approach
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Consider a simple example: 
Factorisation of the real matrix element in the relevant limits

γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

C13 = 𝒩
1

2 p1 ⋅ p3 [ 1 + z2
1

1 − z1
− ϵ(1 − z1)] |Mγ*→qq̄(p1 + p3, p2) |2

C23 = 𝒩
1

2 p2 ⋅ p3 [ 1 + z2
2

1 − z2
− ϵ(1 − z2)] |Mγ*→qq̄(p1, p2 + p3) |2

S3 = 𝒩
p1 ⋅ p2

p1 ⋅ p3 p2 ⋅ p3
|Mγ*→qq̄(p1, p2) |2

a) gluon collinear to the quark: pμ
1 = z1pμ + kμ

T −
k2

T

z1

nμ

2 p ⋅ n
, pμ

3 = (1 − z1)pμ − kμ
T −

k2
T

1 − z1

nμ

2 p ⋅ n

b) gluon collinear to the antiquark: pμ
2 = z2pμ + kμ

T −
k2

T

z2

nμ

2 p ⋅ n
, pμ

3 = (1 − z2)pμ − kμ
T −

k2
T

1 − z2

nμ

2 p ⋅ n

c) soft gluon: p3 → 0

𝒩 = 8πμ2ϵαSCF
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Subtraction @ NLO: Catani-Seymour like approach
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Consider a simple example: 
Factorisation of the real matrix element in the relevant limits

γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

It is tempting to write the approximant as

A1 = C13 + C23 + S3

but
1. the formula is incorrect in the simultaneous soft and collinear limits because of  

double counting (overlapping singularities)
2. the expressions  and  cannot be evaluated away from their 

corresponding singular regions as momentum conservation and mass shell 
conditions are not satisfied and collinear fractions  are not well defined

C13, C23 S3

z1,2

Solutions given by 
1. matching
2. extension
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Subtraction @ NLO: Catani-Seymour like approach
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Consider a simple example: 
Factorisation of the real matrix element in the relevant limits

γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

1. Matching (analogously in the limits collinear to the anti quark)

lim
p3→0

C13 = 𝒩
1

2 p1 ⋅ p3

2
1 − z1

|Mγ*→qq̄(p1,p2) |2

lim
p1∥p3

S3 = 𝒩
z1p ⋅ p2

p1 ⋅ p3 (1 − z1) p ⋅ p2
|Mγ*→qq̄(p1,p2) |2

= 𝒩
1

2 p1 ⋅ p3

2z1

(1 − z1)
|Mγ*→qq̄(p1,p2) |2 ≡ C13S3

lim
p3→0

(C13 − C13S3) = 𝒩
1

2 p1 ⋅ p3
|Mγ*→qq̄(p1,p2) |2 lim

z1→1 [ 2
1 − z1

−
2z1

1 − z1 ] = 0

lim
p1∥p3

(S3 − C13S3) = 0 by definition

A1 = C13 + C23 + S3 − C13S3 − C23S3

p3 → 0 ∼ z1 → 1

p1 ∥ p3 : p1 ∼ z1p, p3 ∼ (1 − z1)p
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Subtraction @ NLO: Catani-Seymour like approach
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Consider a simple example: 
Factorisation of the real matrix element in the relevant limits

γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

1. Notice that defining instead 

lim
p3→0

C13 = 𝒩
1

2 p1 ⋅ p3

2
1 − z1

|Mγ*→qq̄(p1,p2) |2 = S3C13

lim
p1∥p3

S3 = 𝒩
z1p ⋅ p2

p1 ⋅ p3 (1 − z1) p ⋅ p2
|Mγ*→qq̄(p1,p2) |2

= 𝒩
1

2 p1 ⋅ p3

2z1

(1 − z1)
|Mγ*→qq̄(p1,p2) |2

lim
p1∥p3

(S3 − S3C13) = 𝒩
1

2 p1 ⋅ p3
|Mγ*→qq̄(p1,p2) |2 [ 2z1

1 − z1
−

2
1 − z1 ] ≠ 0

lim
p3→0

(C13 − S3C13) = 0 by definition
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Subtraction @ NLO: Catani-Seymour like approach
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Consider a simple example: 
Factorisation of the real matrix element in the relevant limits

γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

2. Extension requires

Momentum mappings from real to Born momenta for the evaluation of the 
reduced Born Matrix element. They must have the following properties
• ensure momentum conservation and mass shell of all particles  
• recover the expected behaviour in the corresponding singular limit 
• (lead to exact factorisation of the phase space)

Similarly, one needs to consistently extend the definition of collinear fractions  z1,2

{p̃}S3

{p̃}C13S3

{p̃}C13

{p}s

{p̃}c

{p}c

{p̃}s

internal consistency 
between 
overlapping regions
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Subtraction @ NLO: Catani-Seymour
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

The approximant is written as a sum of dipoles  

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2

A dipole  include a pair , interpreted as coming from a splitting process 
, and a “spectator” parton that absorbs the recoil of the splitting and 

ensures the correct treatment of colour and spin correlations (trivial in the considered 
example) 

Vij,k (i, j)
ĩj → i + j

[Catani, Seymour (1998)]
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Subtraction @ NLO: Catani-Seymour
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Momentum mapping: {pi, pj, pk} → {p̃ij, p̃k}

The approximant is written as a sum of dipoles  

p̃μ
ij = pμ

i + pμ
j + αpμ

k
p̃μ

k = (1 − α)pμ
k

momentum conservation

mass-shell relation p̃2
ij = 0 ⟹ α = −

pi ⋅ pj

(pi + pj) ⋅ pk

Usual  is replaced by α yij,k = −
α

1 − α
=

pi ⋅ pj

pi ⋅ pj + pi ⋅ pk p +j ⋅pk

p̃μ
ij + p̃μ

k = pμ
i + pμ

j + pμ
k

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Momentum mapping: {pi, pj, pk} → {p̃ij, p̃k}

The approximant is written as a sum of dipoles  

p̃μ
ij = pμ

i + pμ
j −

yij,k

1 − yij,k
pμ

k

p̃μ
k =

1
1 − yij,k

pμ
k

yij,k =
pi ⋅ pj

pi ⋅ pj + pi ⋅ pk p +j ⋅pk

In the relevant soft/collinear limit ,  and then, as expected, pi ⋅ pj → 0 y ∼ 0

p̃μ
ij ∼ pμ

i + pμ
j , p̃μ

k ∼ p̃μ
k

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Subtraction @ NLO: Catani-Seymour

27

Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Momentum mapping: {pi, pj, pk} → {p̃ij, p̃k}

The approximant is written as a sum of dipoles  

p̃μ
ij = pμ

i + pμ
j −

yij,k

1 − yij,k
pμ

k

p̃μ
k =

1
1 − yij,k

pμ
k

zi =
pi ⋅ pk

(pi + pj) ⋅ pk
=

pi ⋅ p̃k

p̃ij ⋅ p̃k
zi → 1

zi =
pi ⋅ pk

(pi + pj) ⋅ pk
→ zc

i
p ⋅ pk

p ⋅ pk
= zc

i

collinear limit

soft limit

yij,k =
pi ⋅ pj

pi ⋅ pj + pi ⋅ pk p +j ⋅pk

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Dipole functions: start from eikonal approximation and apply partial fractioning  

The approximant is written as a sum of dipoles  

Sijk = 𝒩
pi ⋅ pk

pi ⋅ pj pk ⋅ pj
|Mγ*→qq̄ |2 = 𝒩 [ pi ⋅ pk

pi ⋅ pj (pi + pk) ⋅ pj
+

pi ⋅ pk

(pi + pk) ⋅ pj pk ⋅ pj ] |Mγ*→qq̄ |2

only collinear to pi only collinear to pk

contributes to Vij,k contributes to Vkj,i

Sij,k Skj,i

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Dipole functions: match  and  (smooth interpolation)Cij Sij,k

The approximant is written as a sum of dipoles  

Sij,k = 𝒩
pi ⋅ pk

pi ⋅ pj (pi + pk) ⋅ pj
|Mγ*→qq̄ |2

= 𝒩
1

2 pi ⋅ pj

2(1 − yij,k)zi

1 − zi(1 − yij,k)
|Mγ*→qq̄ |2

Cij = 𝒩
1

2 pi ⋅ pj [ 1 + z2
i

1 − zi
− ϵ(1 − zi)] |Mγ*→qq̄ |2

Vij,k = Cij + Sij,k − CijSij,k = 𝒩
1

2 pi ⋅ pj [ 1 + z2
i

1 − zi
− ϵ(1 − zi) +

2(1 − yij,k)zi

1 − zi(1 − yij,k)
−

2zi

1 − zi ] |Mγ*→qq̄ |2

= 𝒩
1

2 pi ⋅ pj [ 2
1 − zi(1 − yij,k)

− (1 + zi) − ϵ(1 − zi)] |Mγ*→qq̄ |2

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Consider a simple example: γ* → q(p̃1) + q̄(p̃2)

p1

p2

p3

CATANI-SEYMOUR DIPOLES (no hadrons in the initial-state)

Integrated counterterm:

The approximant is written as a sum of dipoles  

𝒱ij,k = ∫ dΦrad(p̃ij, p̃k)Vij,k =
αS

2π
1

Γ(1 − ϵ) ( 4πμ2

2p̃ij ⋅ p̃k) )
ϵ

Γ3(1 − ϵ)
Γ(1 − 3ϵ)

CF [ 1
ϵ2

+
1
ϵ

3 + ϵ
2(1 − 3ϵ) ]

dΦ(pi, pj, pk; q) = dΦ(p̃ij, p̃k; q)dΦrad(p̃ij, p̃k)

dΦrad(p̃ij, p̃k) =
(2p̃ij ⋅ p̃k)1−ϵ

16π2

dΩd−2

(2π)1−2ϵ
dzidyij,kΘ(zi(1 − zi))Θ(yij,k(1 − yij,k))

× (zi(1 − zi))−ϵ(1 − yij,k)1−2ϵy−ϵ
ij,k

exact factorisation

[Catani, Seymour (1998)]

A1 = V13,2(p1, p2, p3) |Mγ*→qq̄(p̃1, p̃2) |2 + V23,1(p1, p2, p3) |Mγ*→qq̄(p̃′ 1, p̃′ 2) |2
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Subtraction @ NLO: NLO revolution!
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CS dipole subtraction
• momentum recoil absorbed by one particle 

numerical complexity scales as 
 

• construction starts from soft radiation
• general algorithm
• automated in different (public) programs: 

Sherpa, Helac-NLO, MadDipole, Matrix … 

n × (n − 1) × (n − 2) ∼ n3

FKS subtraction
• momentum recoil  distributed among all 

particles (global) complexity scales as 
 

• construction starts from collinear radiation
• general algorithm
• automated in different (public) programs: 

POWHEG BOX, MadGraph5_aMC@NLO …

n × (n − 1) × 1 ∼ n2

Numerical evaluation of tree-level (including colour- and spin-correlated) and 1-loop QCD (and EW and BSM) virtual 
amplitudes automated in different public generators: OpenLoops, Recola, GoSam, MadLoop, NLOX …

Complete automation: NLO QCD (and EW) corrections to any desirable processes for 
LHC physics can be computed by pressing a button 

technicalities not covered in this talk 
(together with identified incoming hadrons)
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@ NLO
• toy-model example
• FKS approach
• CS approach

@NNLO
• anatomy of the complications

Remarks

Outline

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 
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Subtraction @ NNLO: anatomy of “complications” 

32

Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit triple collinear limit
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit

triple collinear limit: further splitting since different orderings lead 
to differs limiting behaviour

1 = ∑
ij

∑
α

wij,α + ∑
αβ

wiα;jβ

1. Decomposition of phase space (FKS-inspired) 
as in STRIPPER [Czakon, Mitov, Poncelet] and Nested Soft-Collinear 
Subtraction [Caola, Melnikov, Rontsch]

triple collinear limit

̂ηi =
1
2

(1 − cos θir) ∈ [0,1]

̂ξi =
Ei

Emax
∈ [0,1]

from R. Poncelet
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit

2. CS-inspired: as CoLoRFulNNLO subtraction [Bevilacqua, Del Duca, Duhr, Kardos. Somogyi,  Sozr, Tramontano, Trocsanyi, 
Tulipant]

triple collinear limit

σNNLO = ∫ dΦn+2 {RRFn+2−ARR
2 Fn − ARR

1 Fn+1 + ARR
12 Fn}

remove overlap between 
 and and ARR

2 ARR
1

subtract double-unresolved subtract single-unresolved
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit

2. CS-inspired: as CoLoRFulNNLO subtraction [Bevilacqua, Del Duca, Duhr, Kardos. Somogyi,  Sozr, Tramontano, Trocsanyi, 
Tulipant]

triple collinear limit

σNNLO = ∫ dΦn+2 {RRFn+2 − ARR
2 Fn−ARR

1 Fn+1+ARR
12 Fn}

+∫ dΦn+1 RVFn+1+ ∫1
ARR

1 Fn+1−ARV
1 Fn−(∫1

ARR
1 )

A1

Fn

subtract single-unresolved 
limit of  ∫1

ARR
1
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit

2. CS-inspired: as CoLoRFulNNLO subtraction [Bevilacqua, Del Duca, Duhr, Kardos. Somogyi,  Sozr, Tramontano, Trocsanyi, 
Tulipant]

triple collinear limit

σNNLO = ∫ dΦn+2 {RRFn+2−ARR
2 Fn−ARR

1 Fn+1+ARR
12 Fn}

+∫ dΦn+1 RVFn+1 + ∫1
ARR

1 Fn+1 − ARV
1 Fn − (∫1

ARR
1 )

A1

Fn

+∫ dΦn VV + ∫2
[ARR

2 − ARR
12 +] + ∫1

ARV
1 + (∫1

ARR
1 )

A1

Fn
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit triple collinear limit

Matching: much more involved; since limits usually do not commute, care must be taken in the choice of ordering

A2 = ∑
ij

{[Cijα + Ciα,jβ + CSiα;j + Sij] − [Cijα ∩ CSiα;j + Ciα;jβ ∩ CSiα;j + Cijα ∩ Sij + CSiα;j ∩ Sij + CSiα;jβ ∩ Sij]
+[Cijα ∩ CSiα ∩ Sjα + Ciα;jβ ∩ CSiα;j ∩ Sij]}

2. CS-inspired: as CoLoRFulNNLO subtraction [Bevilacqua, Del Duca, Duhr, Kardos, Somogyi,  Sozr, Tramontano, Trocsanyi, 
Tulipant]

from Somogyi talk at Edinburgh 2018 (“Subtracting Infrared Singularities Beyond NLO”)
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Double real: more involved structure of singular limits. Overlapping of singularities is a more severe problem 

double collinear limit triple collinear limit

Extension: requires momentum mappings that respect factorization and delicate structure of cancellations in all 
limits 

{p}n+2 → {p̃}n

{p}n+1 → {p̃}n

Integration: can be tedious and non-trivial

2. CS-inspired: as CoLoRFulNNLO subtraction [Bevilacqua, Del Duca, Duhr, Kardos. Somogyi,  Sozr, Tramontano, Trocsanyi, 
Tulipant]
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Double real: outliers and mis-binning are more severe at NNLO 

double collinear limit triple collinear limit

Parallelisation is crucial to keep running time 
manageable
Averaging the results obtained in numerous 
smaller size samples can lead to large errors 
because of outliers from mis-binning 
Careful treatment of outliers for obtaining 
smoother distributions without introducing 
biases 
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Real-virt 
numerical stability is an important issue, especially when probing unresolved regions 

Progress in one-loop providers very important
• automated generation of matrix elements for 

relatively difficult processes (in QCD and in 
EW)

• stable numerical evaluation suitable for their 
integration in a NNLO calculation 

Rescue system
double precision  hybrid precision  

 penalty factor in evaluation time
double precision  quad precision  

 penalty factor in evaluation time

→
𝒪(2 − 10)

→
𝒪(10 − 100)



Advanced School & Workshop on Multiloop Scattering Amplitudes - NISER - 15-19 January 2024, Luca Buonocore

Subtraction @ NNLO: anatomy of “complications” 

39

Numerical complexity of NNLO calculations: medium/large size HPC clusters required

• typical runtime for :  CPU hours  
 

, di-jet, …  VV:RV:RR  1:20:100 

• extreme  case:  CPU hours  
 
tri-jet, …  VV:RV:RR  1:100:200

2 → 2 𝒪(100k)

V + j → ∼

2 → 3 𝒪(100M)

→ ∼

Different subtraction schemes available on the market with their strengths and limitations but yet no general 
frameworks as at NLO (a lot of activities in this direction)  

1
σ

dΣ
d cos ϕ
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Remarks

ISSUE: Monte Carlo integration required; how to achieve the cancellation of intermediate singularities while 
retaining the flexibility of the numerical approach? 

- Presentation limited to the “standard approach”: start from real radiation, introduce counterterms, integrate them 
over radiation phase space, combine with lower-multiplicity contribution

- Alternatively, real and virtual can be integrated simultaneously, for example, using loop-tree duality relations

- Integration of counterterms, especially at NNLO, can be highly non-trivial;  
Methods as reverse unitary can be exploit to transform phase space integrals into (multi)-loop ones, 
so that multi-loop techniques can be applied to perform this task


