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✓ Advanced tools to compute Feynman integrals/amplitudes. Why is it still hard?

Introduction

‣ Master equation: decomposition in terms of master integrals G = ∑
i

cimi

‣ IBP relations

✓ How do we compute the ? Linear relations between Feynman integralsci

‣ Dimension-shift relations

✓ Solve large linear systems

‣ Often a bottleneck!

✓ Not discussed here: how to compute the mi

✓ Everything you want to know about Feynman integrals: many reviews, such as

‣ Analytic Tools For Feynman Integrals, V.A. Smirnov (Springer, 2012)

‣ Feynman Integrals (A Comprehensive Treatment for Students and Researchers), 
S.Weinzierl (Springer, 2022)

‣ We will discuss one approach to solve this, applicable beyond this context
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✓ Multi-loop amplitudes and integrals that depend on many scales

Motivation

‣ If not careful, expressions get too large to handle in analytic form

‣ Requires special tools compared to quantities depending on fewer scales 

‣ Use of finite-field based techniques has been crucial for the great 
progress in these calculations 

3-jet production at LHC 2-loop 5-pt one mass integrals Higgs + 2-jet production at LHC

[many tools implement these techniques: FiniteFlow, Caravel, FireFly, …]
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✓ A field  with a finite set of  elements, equipped with two (four) operations. If 𝔽p p a, b ∈ 𝔽p

✓ Concrete representation: the (positive) integers modulo a prime number, equipped 
with the standard addition and multiplication

‣  ; 2−1 = − 2 = 3 mod 5

What is a finite field?

✓ There is an additive and multiplicative inverse,  and −a a−1

‣ addition a + b ∈ 𝔽p

‣ multiplication a . b ∈ 𝔽p

‣ subtraction a − b ∈ 𝔽p

‣ division a /b ∈ 𝔽p

✓ Example: , the set 𝔽5 {0,1,2,3,4}

‣  ;  ;−4 = 1 4−1 = 4 mod 5

‣ a + (−a) = 0
‣ a . a−1 = 1
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✓ Rational numbers have a unique image in a finite field

✓ Can implement very efficient and exact linear algebra algorithms over a finite field 
(using the fact that all numbers fit exactly on a computer)

Why use finite fields?

✓ Any rational number is represented by an integer of fixed maximum size

‣ By choosing , we can control the size of the integers we need to handlep

1
37

= 3 ,
3

152
=

37
13

= 4 mod 5‣ E.g.

‣ Can be used to numerically evaluate rational expressions exactly

‣  with  for 32-bit numbers𝔽p p = 231 − 1

‣  with  for 64-bit numbers𝔽p p = 263 − 25

✓ If we ask the right question, and the finite field is large enough, answer is the same 
as for rational numbers

‣ e.g.: compute the rank of matrices

‣ Verify correctness by evaluating in a second finite field

‣ The inverse operation is not unique, more on this later
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✓ 😀  When only rational functions are involved

When to use/not use finite fields? (some examples)

‣ Can be exactly represented in the finite field

✓ 😀  When the results are simple

‣ Result in the finite field is likely to be easily lifted to rational numbers

‣ Not always what we see in practice, but there are ways around it

✓ 🙁  Numerical evaluations for e.g. Monte Carlo integration

‣ Other functions are involved that cannot be represented in a finite field

‣ Complicated numerical points require a lot of finite-field evaluations

✓ 🙁  To compute limits of expressions
‣ There is no natural concept of distance in a finite field

It usually takes some effort to formulate a 
problem in a way where it can be 

approached with finite fields
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✓ Goal: determine the  from numerical evaluationsci

Functional reconstruction

‣ Assume  and  are polynomial in the  over the rational numbers P Q xk

G = ∑
i

cimi ci =
P(x1, …, xn)
Q(x1, …, xn)

✓ Step 1: write the most general ansatz for the polynomials

✓ Step 2: generate numerical data in , and solve large linear system to constrain ansatz𝔽p

‣ Note: Scales badly with the number of variables and degree of polynomials, very 
important to be smart when writing the ansatz

P(x1, …, xn) = d + d1x1 + … + d11x2
1 + d12x1x2 + …

‣ Solves the problem in 𝔽p

✓ Step 3: lift the solution from  to the field of rational numbers𝔽p

[e.g., Peraro, JHEP 1612 (2016) 030]

‣ Rational reconstruction

spires-open-journal://
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✓ Goal: determine the  from their image in d… 𝔽p

Rational reconstruction and Chinese remainder theorem
P(x1, …, xn) = d + d1x1 + … + d11x2

1 + d12x1x2 + …

✓ Use extended Euclidean algorithm to determine d…

‣ Answer is not unique!

[e.g., Peraro, JHEP 1612 (2016) 030]

‣ Guess likely correct if d… =
a
b

, a2, b2 ≲ p

✓ If there are worries, check in second finite field 𝔽n

✓ If rational reconstruction failed: use Chinese remainder theorem

‣ Combine evaluations in  and  to get evaluation in 𝔽p 𝔽n 𝔽pn

‣ Maintains advantage of `small’ finite fields

‣ Systematically brings us closer to satisfy the criterium for rational reconstruction

✓ If number we are targeting is hard, will need a lot of finite-field evaluations!
‣ Target quantities that are expected to be simple!

3
152

=
37
13

= 4 mod 5

spires-open-journal://
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✓ Don’t appear in IBPs, but appear in pure basis of master integrals and their DEs

What about square roots?

‣ Example: three-mass one-loop triangle leading singularity is λ(p2
1 , p2

2 , p2
3)

✓ Can I compute a square-root in a finite-field?

‣ No, because it’s not part of the operations we have …

✓ However, can check if the equation  has solutions in a2 = b 𝔽p

∂p2
i

λ(p2
1 , p2

2 , p2
3) T(p2

1 , p2
2 , p2

3) =
T(p2

1, p2
2, p2

3)

2 λ(p2
1, p2

2, p2
3)

∂p2
i

λ(p2
1 , p2

2 , p2
3) + …

‣ Coefficients in the DE do have square roots in them… 

‣ If a solution exists,  is a quadratic residueb mod p
‣ If  is a quadratic residue, can compute the `square root’b
‣ Use e.g. Tonelli-Shanks algorithm to find a
‣ Example: (1823712)2 = 1620773388 mod 231 − 1

✓ How many quadric residues exist? For , there are  (~ half the elements)p > 2 (p + 1)/2

‣ Easy to find: pick points randomly and have 50% chance to land on quadratic residue!
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✓ Planar five-point one-mass scattering at two-loops

Example 1

‣ This set of integrals has a fixed ordering of the massless legs

‣ Singularities of these integrals tell us a lot about them:  forms (aka, alphabet)d log

‣ If I know the singularities of the representative integrals above, how do I generate an 
independent set of  forms describing the singularities of the integrals in all 
permutations?

d log

‣ For an amplitude, need all permutations of the massless legs {p2, p3, p4, p5}
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✓ Differential equations for the pentagon with a single massive external leg

Example 2

{ϵ3 Δ5 F6−2ϵ[1,1,1,1,1],

ϵ2s23s34 F[0,1,1,1,1], ϵ2s34s45 F[1,0,1,1,1], ϵ2s15s45 F[1,1,0,1,1], ϵ2(s12s15 − p2
1 s34) F[1,1,1,0,1], ϵ2s12s23F[1,1,1,1,0] ,

ϵ2 λ(p2
1 , s23, s45) F[{1,1,0,1,0}],

(1 − 2ϵ)ϵ F[1,1,0,0,0], (1 − 2ϵ)ϵ F[1,0,1,0,0], (1 − 2ϵ)ϵ F[0,1,0,1,0], (1 − 2ϵ)ϵ F[0,0,1,0,1],

(1 − 2ϵ)ϵ F[1,0,0,1,0], (1 − 2ϵ)ϵ F[0,1,0,0,1]}

✓ Good basis
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⃗c ⋅
∂

∂ ⃗s
⃗𝒥 = C(ϵ, ⃗s ) ⃗𝒥

✓ DE in a random direction:

C(ϵ, ⃗s ) = ϵ∑
α

Mα ⃗c ⋅
∂

∂ ⃗s
log(Wα) .

d ⃗𝒥(x, ϵ) = ϵ M(x) ⃗𝒥(x, ϵ) M(x) = ∑
i

Mα d log Wα

✓ For numerical kinematics and a random ,  is a matrix of numbers⃗c C(ϵ, ⃗s )
‣ Flatten  into a vector, collect several such vectors into a matrixC(ϵ, ⃗sk )

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 20]

‣ Rank of this matrix is the number of independent letters!

✓ Assume over complete set of letters is known: how to determine the ?Mα

𝒲αk = ⃗c ⋅ [ ∂
∂ ⃗s

log(Wα)]
⃗s= ⃗s(k)

‣ Find which letters contribute: row reduction (like in Example 1)

‣ Evaluate

‣ The matrices of rational numbers are Mα = ∑
k

𝒲−1
α,kC( ⃗s(k))



CONCLUDING REMARKS 
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✓ Finite Fields are a tool

Concluding Remarks

✓ They don’t do magic: as with all tools, they are helpful for certain classes of problems 

‣ Particularly useful to explore properties of linear systems

‣ Sometimes it takes some effort to formulate a problem in the right way

✓ Very useful in function/rational reconstruction problems

✓ Useful beyond Feynman integral/amplitude calculation

‣ Useful technique to handle big expressions, wherever they appear



THANK YOU!


