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Section 1

Review
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The Feynman integral

The Feynman integral for a Feynman graph G with next external edges, nint
internal edges and l loops is given in D space-time dimensions by

Iν1...νnint
(D,x1, . . . ,xNB) = elεγE

(
µ2)ν− lD

2

∫ l

∏
r=1

dDkr

iπ D
2

nint

∏
j=1

1(
−q2

j +m2
j

)νj
,

where each internal edge ej of the graph is associated with a triple (qj ,mj ,νj),

qj =
l

∑
r=1

λjr kr +
next−1

∑
r=1

σjr pr , ν =
nint

∑
j=1

νj .

The coefficients λjr and σjr can be obtained from momentum conservation at
each vertex of valency > 1.
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Variables

The Feynman integral depends on:

The dimension of space-time D ∈ C
(or more precisely on Dint ∈ N and ε ∈ C).

The exponents of the propagators (ν1, . . . ,νnint).
In principle we may allow νj ∈C, but very often we will limit us to the case
νj ∈ Z.
Kinematic variables:

A scalar Feynman integral depends on the external momenta only through
the Lorentz invariants pi ·pj .
A dimensionless Feynman integral depends on the Lorentz invariants, the
internal masses and the scale µ only through the dimensionless ratios

−pi ·pj

µ2 ,
m2

i

µ2 .

We denote the dimensionless kinematic variables by x1,x2, . . . .
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Kinematic variables

Notation:

number of independent kinematic variables: NB

independent kinematic variables: x1,x2, . . . ,xNB

Feynman integral: Iν1...νnint
(D,x1, . . . ,xNB)
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Integration by parts

Integration-by-parts identities are based on the fact that within dimensional
regularisation the integral of a total derivative vanishes∫

dDk

iπ D
2

∂
∂kµ [qµ · f (k)] = 0,

i.e. there are no boundary terms.
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Integration by parts

Integration-by-parts identities:
Within dimensional regularisation we have for any loop momentum ki and any
vector qIBP ∈ {p1, ...,pNext ,k1, ...,kl}

elεγE
(
µ2)ν− lD

2

∫ l

∏
r=1

dDkr

iπ D
2

∂
∂kµ

i
qµ

IBP

nint

∏
j=1

1(
−q2

j +m2
j

)νj
= 0.

Working out the derivatives leads to relations among integrals with different
sets of indices (ν1, . . . ,νnint).
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Master integrals

Using

integration-by-parts identities

symmetries

we may express most of the integrals in terms of a few remaining integrals.
The remaining integrals are called master integrals.
We denote the indices of the master integrals by

ννν1 = (ν11, . . . ,ν1nint) ,

ννν2 = (ν21, . . . ,ν2nint) ,

. . .

νννNmaster = (νNmaster1, . . . ,νNmasternint) .

We define a Nmaster-dimensional vector I⃗ by

I⃗ =
(
Iννν1 , Iννν2 , . . . , IνννNmaster

)T
.
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Master integrals

Summary:
We may write any Feynman integral from a family of Feynman integrals as a
linear combination of the master integrals

Iν1...νnint
(D,x1, . . . ,xNB) =

Nmaster

∑
j=1

cj Iνννj (D,x1, . . . ,xNB),

where the coefficients cj are rational functions of D and the kinematic variables
x.
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Graph polynomials

Let G be a connected graph and T1 the set of its spanning trees.
The first graph polynomial is given by

U (a) = ∑
T∈T1

∏
ei /∈T

ai ,

Let T2 be the set of its spanning 2-forests with respect to the internal edges.
An element of T2 is denoted as (T1,T2). Let further denote PTi the set of
external momenta of G attached to Ti . The second graph polynomial is
given by

F (a) = F0 (a)+U (a)
nint

∑
i=1

ai
m2

i

µ2 ,

F0 (a) = ∑
(T1,T2)∈T2

(
∏

ei /∈(T1,T2)

ai

)(
∑

pj∈PT1

∑
pk∈PT2

pj ·pk

µ2

)
.
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Dimensional-shift operators and raising operators

Dimensional-shift operators:

D±Iν1...νnint
(D,x1, . . . ,xNB) = Iν1...νnint

(D±2,x1, . . . ,xNB)

Raising operators:

j+Iν1...νj ...νnint
(D,x1, . . . ,xNB) = νj · Iν1...(νj+1)...νnint

(D,x1, . . . ,xNB)

Note that we defined j+ such that it raises the index νj → νj +1 and multiplies the integral with
a factor νj .
With this definition we have for example(

j+
)2

Iν1...νj ...νnint
(D,x1, . . . ,xNB ) = νj (νj +1) · Iν1...(νj+2)...νnint

(D,x1, . . . ,xNB ) .
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Dimensional shift relations

Recall

D+Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk )

∫
αk≥0

dnint α

(
nint

∏
k=1

ανk−1
k

)
1

U ·U D
2

e−
F
U ,

j+Iν1...νj ...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk )

∫
αk≥0

dnint α

(
nint

∏
k=1

ανk−1
k

)
αj

U
D
2

e−
F
U .

Thus

Iν1...νnint
(D) = U

(
1+, . . . ,nint

+
)

D+Iν1...νnint
(D) .
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Dimensional shift relations

Dimensional shift relations:

Iν1...νnint
(D) = U

(
1+, . . . ,nint

+
)

Iν1...νnint
(D+2) .

Let I⃗ = (Iννν1 , . . . , IνννNmaster
)T be a basis in D space-time dimensions and

I⃗′ = (I′ννν1
, . . . , I′νννNmaster

)T be a basis in (D+2) space-time dimensions.

Apply the shift relation to all integrals from I⃗ and reduce the integrals on the
right-hand side with IBP-identities to I⃗′: We obtain a (Nmaster ×Nmaster)-matrix S

I⃗ = S I⃗′.

Within dimensional regularisation the matrix S is invertible. Inverting this matrix
allows us to express any master integral in (D+2) dimensions as a linear
combination of master integrals in D dimensions:

I⃗′ = S−1 I⃗.
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Section 2

Differential equations
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The method of differential equations

Denote by x = (x1, ...,xNB) the kinematic variables (scalar products of external
momenta and internal masses squared).

We want to calculate

Iν1...νnint
(D,x)

1 Find a differential equation with respect to the kinematic variables for the
Feynman integral (always possible).

2 Transform the differential equation into a simple form (bottle neck).
3 Solve the latter differential equation with appropriate boundary conditions

(always possible).

Stefan Weinzierl Techniques for multi-loop computations NISER 2024 15 / 112



Subsection 1

Deriving the differential equation
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Differential equations

Let xk be a kinematic variable. Let Ii ∈ {I1, ..., INmaster} be a master integral.
Carrying out the derivative

∂
∂xk

Ii

under the integral sign and using integration-by-parts identities allows us to
express the derivative as a linear combination of the master integrals.

∂
∂xk

Ii =
NF

∑
j=1

aij Ij
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Differential equations

The second Symanzik polynomial F is linear in the kinematic variables xj . Set

F ′
xj
(a) =

∂
∂xj

F (a) .

From the Schwinger parameter representation:

∂
∂xj

Iν1...νnint
(D,x) = −F ′

xj

(
1+, . . . ,nint

+
)

Iν1...νnint
(D+2,x)

On the right-hand side:

Reduce integrals to a basis in (D+2) dimensions.

Convert basis integrals from (D+2) to D dimensions.
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Differential equations

Let us formalise this:

I = (I1, ..., INmaster) , set of master integrals,

x = (x1, ...,xNB) , set of kinematic variables the master integrals depend on.

We obtain a system of differential equations

dI +AI = 0,

where A(ε,x) is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi ,

satisfying the integrability condition

dA+A∧A = 0.
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Differential equations in ε-form

The system of differential equations is particular simple, if A is of the form

A = ε
NL

∑
j=1

Cj ωj ,

where

Cj is a Nmaster ×Nmaster-matrix, whose entries are (rational or integer)
numbers,

the only dependence on ε is given by the explicit prefactor,

the differential one-forms ωj have only simple poles.
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Section 3

Solving a differential equation in ε-form

Stefan Weinzierl Techniques for multi-loop computations NISER 2024 21 / 112



Solving a differential equation in ε-form

Assume
1 The differential equation for I⃗ is in ε-form:

(d +A)⃗ I = 0, A = ε
NL

∑
j=1

Cj ωj .

2 All master integrals have a Taylor expansion in ε:

Iνννi (ε,x) =
∞

∑
j=0

I(j)νννi
(x) · εj .

3 We know suitable boundary values for all master integrals.
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Solving a differential equation in ε-form

We plug the Taylor expansion into the differential equation(
d + ε

NL

∑
k=1

Ck ωk

)(
∞

∑
j=0

I⃗(j) (x) · εj

)
= 0,

and compare term-by-term in the ε-expansion.

We obtain

d⃗ I(0) (x) = 0,

d⃗ I(j) (x) = −
NL

∑
k=1

ωk Ck I⃗(j−1) (x) , j ≥ 1.
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Chen’s iterated integrals

Definition
For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path,
write for the pull-back of ωj to the interval [0,1]

fj (λ)dλ = γ∗ωj .

The iterated integral is defined by

Iγ (ω1, ...,ωk ;λ) =

λ∫
0

dλ1f1 (λ1)

λ1∫
0

dλ2f2 (λ2) ...

λk−1∫
0

dλk fk (λk) .
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Multiple polylogarithms

We are interested in differential one-forms, which have only simple poles.
The simplest case:

ωmpl (zj) =
dλ

λ− zj
.

Definition (Multiple polylogarithms)

G(z1, ...,zk ;λ) =

λ∫
0

dλ1

λ1 − z1

λ1∫
0

dλ2

λ2 − z2
...

λk−1∫
0

dλk

λk − zk
, zk ̸= 0

Stefan Weinzierl Techniques for multi-loop computations NISER 2024 25 / 112



The method of differential equations

Example

One integral I in one variable x with boundary condition I(0) = 1. Consider
the differential equation

(d +A) I = 0, A = −ε
dx

x −1
.

Then

I(x) = 1+ εG (1;x)+ ε2G (1,1;x)+ ε3G (1,1,1;x)+ ...
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Multiple polylogarithms

Definition based on iterated integrals:

G(z1, ...,zk ;y) =

y∫
0

dt1
t1 − z1

t1∫
0

dt2
t2 − z2

...

tk−1∫
0

dtk
tk − zk

Definition based on nested sums:

Lim1 ,m2 ,...,mk (x1,x2, ...,xk ) =
∞

∑
n1>n2>...>nk>0

xn1
1

nm1
1

· xn2
2

nm2
2

· ... · xnk
k

nmk
k

Conversion:

Lim1 ,...,mk (x1, ...,xk ) = (−1)k Gm1,...,mk

(
1
x1

,
1

x1x2
, ...,

1
x1...xk

;1

)
Short hand notation:

Gm1 ,...,mk (z1, ...,zk ;y) = G(0, ...,0︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0︸ ︷︷ ︸
mk−1

,zk ;y)
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Weights

Define the weight of a multiple polylogarithm as

weight(Gm1,...,mk (z1, ...,zk ;y)) = m1 + · · ·+mk ,

weight(Lim1,...,mk (x1, ...,xk)) = m1 + · · ·+mk .

If the differential equation is in ε-form, all ωj ’s are of the form

ωj = d ln(pj (x)) ,

where pj(x) is a polynomial in the kinematic variables, and the boundary
constants are of uniform weight, then the master integrals can be expressed in
terms of multiple polylogarithms and are of uniform weight.
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Section 4

Transformations of the differential equation
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Examples

m

m

m

m

m

Two-loop double box
8 master integrals
1 kinematic variable

One-loop bubble
2 master integrals
1 kinematic variable

Two-loop sunrise
3 master integrals
1 kinematic variable
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Subsection 1

Fibre bundles
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Fibre bundles

A fibre bundle consists of the following elements:

A differentiable manifold E called the total space.

A differentiable manifold M called the base space.

A differentiable manifold F called the fibre.

A projection π : E → M. The inverse image π−1(p) = Fp is called the
fibre at p.

A Lie group G called the structure group, which acts on F from the left.
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Principal bundles, vector bundles and connections

A principal bundle P is a fibre bundle, whose fibre is identical with the
structure group G.

A vector bundle is a fibre bundle, whose fibre is a vector space. The
dimension r of the fibre F is called the rank of the vector bundle.

A connection one-form ω, which takes values in the Lie algebra g of G,
is a projection of TuP onto the vertical component VuP ∼= g, such that the
horizontal subspaces HuP and HugP on the same fibre are related by a
linear map induced by g ∈ G.

Denote by A the pull-back of ω by a section s : M → P to M:

A = s∗ω.

A defines a covariant derivative:

∇ = d +A.
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Fibre bundles in physics

Quarks (QCD)

Base space: Minkowski space
Fibre: 3-dimensional vector space
Local connection one-form: A = g

i T aAa
µdxµ

General relativity

Base space: (curved) space-time
Fibre: Metric
Local connection one-form: Levi-Civita connection
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Feynman integrals

We have a vector bundle:

Fibre spanned by the master integrals Iννν1 , ..., IνννNmaster
.

(The master integrals Iννν1 (x), . . . , IνννNmaster
(x) can be viewed as local sections, and for each x they

define a basis of the vector space in the fibre.)

Base space with coordinates x = (x1, ...,xNB) corresponding to kinematic
variables.

Connection defined by the matrix A.

Transformations on this vector bundle:

a change of basis in the fibre,

a coordinate transformation on the base manifold.
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Transformations

Change the basis of the master integrals

I⃗′ = U⃗I,

where U(ε,x) is a Nmaster ×Nmaster-matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

Perform a coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai
∂xi

∂x ′
j

dx ′
j .
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Subsection 2

Fibre transformations
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Overview

We seek a transformation I⃗′ = U⃗I such that A′ = UAU−1 +UdU−1 is simpler.

Block decomposition

Reduction to an univariate problem

Picard-Fuchs operators

Exploitung a master integral known to be of uniform weight

Magnus expansion

Moser’s algorithm

Leinartas decomposition

Maximal cuts and constant leading singularities
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Block decomposition

Order the set of master integrals I⃗ = (Iννν1 , . . . , IνννNmaster
)T such that Iννν1 is the

simplest integral and IνννNmaster
the most complicated integral.

The matrix A has a lower block-triangular structure:

A =


A1 0 0 0

0
A3 A2 0
A6 A5 A4



Diagonal blocks: A1, A2, A4

Non-diagonal blocks: A3, A5, A6
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Diagonal blocks

Let’s consider block A2. We consider a transformation of the form

U =

 1 0 0
0 U2 0
0 0 1

 , U−1 =

 1 0 0
0 U−1

2 0
0 0 1

 .

The transformed A′ is given by

A′ =

 A1 0 0
U2A3 U2A2U−1

2 +U2dU−1
2 0

A6 A5U−1
2 A4

 .

Suppose the block A2 contains an unwanted term F and a remainder R:

A2 = F +R.

The term F can be removed by a fibre transformation with U2 given as a solution of
the differential equation

dU−1
2 = −FU−1

2 .
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Example

Assume that we have only one kinematic variable x1 (e.g. NB = 1) and that A2 is of
size (1×1) and given by

A2 =

(
1

x−1
+

2ε
x −1

)
dx .

We would like to remove the first term F = dx/(x −1) by a fibre transformation. We
have to solve the differential equation

d
dx

U−1
2 +

1
x −1

U−1
2 = 0.

A solution is easily found and given by

U−1
2 =

C
x −1

, U2 = C−1 (x −1) .

We may set C = 1 and U2 = x −1 is the sought-after transformation.
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Non-diagonal blocks

Let us now consider block A3. At this stage we would like to preserve the blocks A1

and A2. We consider a transformation of the form

U =

 1 0 0
U3 1 0
0 0 1

 , U−1 =

 1 0 0
−U3 1 0

0 0 1

 .

The transformed A′ is given by

A′ =

 A1 0 0
A3 −A2U3 +U3A1 −dU3 A2 0

A6 −A5U3 A5 A4

 .

Suppose the block A3 contains an unwanted term F and a remainder R:

A3 = F +R.

The term F can be removed by a fibre transformation with U3 given as a solution of
the differential equation

dU3 +A2U3 −U3A1 = F .
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Example

We again consider the case of one kinematic variable x (e.g. NB = 1). We further
assume that A1 and A2 are both blocks of size (1×1). Then A3 is also a block of size
(1×1). Assume that A1 and A2 are already in ε-form an given by

A1 =
εdx

x −1
, A2 =

2εdx
x −1

.

Assume further that F is given by

F =
dx

(x−1)2 .

We have to solve the differential equation[
d
dx

+
ε

x −1

]
U3 =

1

(x −1)2 .

A solution is given by

U3 =
1

(1− ε)(1− x)
.
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Subsection 3

Maximal cuts and constant leading singularities
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Heuristic methods

Suppose somebody gives us a transformation matrix U

I⃗′ = U⃗I.

It is easy to check if this fibre transformation transforms the differential
equation to an ε-form. We simply calculate

A′ = UAU−1 +UdU−1

and check if A′ is in ε-form.

This is a situation where a heuristic method may work well: Guessing a
suitable U may outperform any systematic algorithm to construct the
matrix U.
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Feynman integrals with cuts

Recal: Baikov representation

Iν1...νn (D,x1, . . . ,xNB) = C
∫
C

dNV z [B (z)]
D−l−e−1

2

NV

∏
s=1

z−νs
s

with integration contour C .

Consider a modified integration contour C ′ such that
1 Integration-by-parts identities still hold.
2 The variation of the integral with respect to the kinematic variables comes

entirely from the integrand.
3 The symmetries among the integrals are respected.
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The maximal cut

Definition (Feynman integral with the internal edge ej cut)

Baikov integral with a modified integration domain C ′:

a small anti-clockwise circle around zj = 0 in the complex zj -plane,

in all other variables the intersection of the original integration domain C
with the hyperplane zj = 0.

We may iterate the procedure and take multiple cuts. Of particular importance
is the maximal cut:

Definition (Maximal cut)
Take for a Feynman integral Iν1...νnint

the cut for all edges ej for which νj > 0.
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Example

One-loop two-point function with equal internal masses:
Baikov polynomial (x =−p2/m2 and µ2 = m2 = 1):

B (z1,z2) = −1
4

[
(z1 − z2)

2 −2x (z1 + z2)+ x (4+ x)
]
,

Baikov representation of I11:

I11 =
eεγEx− D−2

2

2
√

πΓ
(

D−1
2

) ∫
C

d2z [B (z1,z2)]
D−3

2
1

z1z2
.

Maximal cut:

MaxCut I11 = (2πi)2 eεγEx− D−2
2

2
√

πΓ
(

D−1
2

) (−1
4

x (4+ x)

) D−3
2

.

In D = 2−2ε dimensions we have to leading order in the ε-expansion:

MaxCut I11 (2−2ε) = − 4π√
−x (4+ x)

+O (ε) .
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Constant leading singularities

Denote the integrands of the master integrals by ϕ1, . . . ,ϕNmaster .

Choose Nmaster independent integration domains C1, . . . ,CNmaster .
The integration domains are independent, if the Nmaster ×Nmaster-matrix
with entries

⟨ϕi |Cj⟩ =
∫
Cj

ϕi

has full rank.

We are interested in choosing the integration domains Cj as simple as
possible. Particular simple integration domains are products of circles
around singular points. These correspond to residue calculations.
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Constant leading singularities

Let ϕ be the integrand of a Feynman integral I.

Define dmin by

dmin = min
j
(ldegree(⟨ϕ|Cj⟩ ,ε)) ,

We say that the Feynman integral I has constant leading singularities,
if for all j

coeff
(
⟨ϕ|Cj⟩ ,εdmin

)
= constant of weight zero,

Integrals with constant leading singularities are a guess for a basis of
master integrals, which puts the differential equation into an ε-form.
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Example

Consider the two-loop double box integral with vanishing internal masses,
p2

1 = p2
2 = p2

3 = p2
4 = 0 and x = s/t .

This is a system with eight master integrals.

Suppose we already found suitable master integrals, which puts the
sub-system of the first six master integrals into an ε-form.

Thus we are left with finding a fibre transformation, which transforms the
last sector, consisting of the two master integrals I111111100 and
I1111111(−1)0 into an ε-form.
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Example

Consider the maximal cut of this sector for the integrals I1111111ν0.
With µ2 = t we have

MaxCut I1111111ν0 =

(2πi)7 24ε (s+ t)ε t3+ν+3ε

4π3
(
Γ
( 1

2 − ε
))2

s2+2ε

∫
CMaxCut

dz8 z−1−2ε
8 (t − z8)

−1−ε (s+ t − z8)
ε z−ν

8 .

We now choose two independent integration domains:

C1 : small circle around z8 = 0 for the z8-integration,

C2 : small circle around z8 = t for the z8-integration.

We set

ϕν =
24ε (s+ t)ε t3+ν+3ε

4π3
(
Γ
(

1
2 − ε

))2
s2+2ε

z−1−2ε
8 (t − z8)

−1−ε (s+ t − z8)
ε z−ν

8 d8z.
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Example

With x = s/t we have

⟨ϕ0|C1⟩ =
64π4

x2 +O (ε) , ⟨ϕ0|C2⟩ = −64π4

x2 +O (ε) .

The integral

MaxCut I111111100 = ⟨ϕ0|CMaxCut⟩

does not have constant leading singularities, but it is easy to fix this issue:

We multiply the integrand by x2.

If in addition we multiply by ε4, the leading singularities are constants of
weight zero.

Strictly speaking we can only infer from the first term of the ε-expansion
of ⟨ϕ0|Cj⟩ that we should multiply by an ε-dependent prefactor, whose
ε-expansion starts at ε4. In this example we can verify a posteriori that ε4

is the correct ε-dependent prefactor.
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Example

Set

ϕ′
0 = ε4x2ϕ0.

Then 〈
ϕ′

0|C1
〉
= 64π4ε4 +O (ε) ,

〈
ϕ′

0|C2
〉
= −64π4ε4 +O (ε) .

Thus

MaxCut
(
ε4x2I111111100

)
=

〈
ϕ′

0|CMaxCut
〉

has constant leading singularities.
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Example

As this sector has two master integrals, we need a second master integral.
We consider ϕ−1 and compute the leading singularities. We obtain

⟨ϕ−1|C1⟩ = 0+O (ε) , ⟨ϕ−1|C2⟩ = −64π4

x2 +O (ε) .

It follows that

MaxCut
(
ε4x2I1111111(−1)0

)
=

〈
ε4x2ϕ−1|CMaxCut

〉
has constant leading singularities.
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Example

It is easily verified, that the two master integrals

ε4x2I111111100 and ε4x2I1111111(−1)0

put the 2×2-diagonal block for this sector into an ε-form.

It remains to treat the off-diagonal block with entries Ai,j , i ∈ {7,8},
j ∈ {1,2,3,4,5,6}. This is most easily done with the methods discussed in the
context of block decomposition. One finds

I′ννν7
= ε4x2I111111100,

I′ννν8
= ε4x2I1111111(−1)0 + x

[
I′ννν6

+
1
2

(
I′ννν5

+ I′ννν4
− I′ννν2

− I′ννν1

)]
.
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Lecture 2
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Transformations

Change the basis of the master integrals

I⃗′ = U⃗I,

where U(ε,x) is a Nmaster ×Nmaster-matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

Perform a coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai
∂xi

∂x ′
j

dx ′
j .
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Examples

m

m

m

m

m

Two-loop double box
8 master integrals
1 kinematic variable

One-loop bubble
2 master integrals
1 kinematic variable

Two-loop sunrise
3 master integrals
1 kinematic variable
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Coordinate transformation on the base manifold

The transformation to an ε-factorised form may introduce algebraic or
transcendental functions.

A coordinate transformation may lead to a nicer form.
Examples:

Square roots:

x =
(1− x ′)2

x ′
, x ′ =

1
2

(
2+ x −

√
x (4+ x)

)
⇒ dx√

x (4+ x)
= −dx ′

x ′

Elliptic case:

x =−9
η(τ)4 η(6τ)8

η(3τ)4 η(2τ)8 , τ =
ψ2(x)
ψ1(x)

⇒
(

π
ψ1(x)

)2 12dx
x (x +1)(x +9)

= 2πi dτ
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Subsection 4

Base transformations
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Base transformations

Coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai
∂xi

∂x ′
j

dx ′
j .
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Example

The one-loop two point function:

m

m

Master integrals:

I⃗ =

(
I10

I11

)
Differential equation:

(d +A)⃗ I = 0, A =

(
0 0

1−ε
2x − 1−ε

2(x+4)
1

2x − 1−2ε
2(x+4)

)
dx .
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Example

There is no fibre transformation rational in x and ε, which factors out ε.
However, if we allow the transformation to be algebraic, we may achieve this
goal.

I⃗′ = U⃗I, U =

(
2ε(1− ε) 0

2ε(1− ε)
√

x
4+x 2ε(1−2ε)

√
x

4+x

)
.

For the transformed system we find

(
d +A′)⃗ I′ = 0, A′ = ε

(
0 0

− dx√
x(4+x)

dx
4+x

)
.
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Example

We have achieved that ε only appears as a prefactor, however we introduced
non-rational functions: The differential one-form

dx√
x (4+ x)

has square root singularities at x = 0 and x =−4.

Remark:

dx√
x (4+ x)

= d ln
(

2+ x +
√

x (4+ x)
)
.

We see that in this case the argument of the logarithm is no longer a
polynomial, but an algebraic function of x .
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Example

Let’s define x ′ by

x =
(1− x ′)2

x ′ .

The inverse relation reads

x ′ =
1
2

(
2+ x −

√
x (4+ x)

)
,

where we made a choice for the sign of the square root. We have

∂x
∂x ′ = −(1− x ′)2

x ′2

and

dx√
x (4+ x)

= −dx ′

x ′ ,
dx

4+ x
=

2dx ′

x ′+1
− dx ′

x ′ .
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Example

Thus in term of the new variable x ′ we have(
d +A′)⃗ I′ = 0, A′ = ε

(
0 0

dx ′
x ′

2dx ′
x ′+1 − dx ′

x ′

)
.

The differential equation is now in ε-form:

The dimensional regularisation parameter occurs only as a prefactor

The only singularities of A′ are simple poles.

For the case at hand, A′ has simple poles at x ′ = 0 and x ′ =−1.
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Rationalising square roots

Consider √
f (x1, . . . ,xn) and V (f ) = {x ∈ Cn|f (x) = 0} .

A point p ∈ V is said to be of multiplicity o ∈ N if all partial derivatives of
order < o vanish at p

∂i1+...+in f

∂x i1
1 · · ·∂x in

n
(p) = 0 with i1 + · · ·+ in < o

and if there exists at least one non-vanishing o-th partial derivative

∂i1+···+in f

∂x i1
1 · · ·∂x in

n
(p) ̸= 0 with i1 + · · ·+ in = o.
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Rationalising square roots

Points of multiplicity 1 are called regular points,
points of multiplicity o > 1 are called singular points of V .

Theorem
Let f (x1, . . . ,xn) be a polynomial of degree d. If V (f ) has a point of multiplicity
(d −1), the square root

√
f (x1, . . . ,xn) can be rationalised.
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Section 5

Elliptic Feynman integrals
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Motivation

m

m

m

m1

m3

m2

Two-loop equal mass sunrise
3 master integrals
1 kinematic variable

Two-loop unequal mass sunrise
7 master integrals
3 kinematic variable
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The equal mass sunrise

With I⃗ = (I110, I111, I211)
T , x =−p2/m2 and µ2 = m2 we have the differential

equation (d +A)⃗I = 0 with

A =

 0 0 0
0 −(D−3) −3
0 1

6 (D−3)(3D−8) 1
2 (3D−8)

 dx
x

+

 0 0 0
0 0 0
− 1

4 − 1
8 (D−3)(3D−8) −(D−3)

 dx
x +1

+

 0 0 0
0 0 0
1
4 − 1

24 (D−3)(3D−8) −(D−3)

 dx
x +9

.
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Subsection 1

Background from Mathematics
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Algebraic curves

Ground field C
Algebraic curve in C2 defined by a polynomial P(x ,y):

P (x ,y) = 0

Projective space CP2 with homogeneous coordinates [x : y : z]:
Algebraic curve in CP2 defined by a homogeneous polynomial P(x ,y ,z):

P (x ,y ,z) = 0

We usually work in the chart z = 1.
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Elliptic curves

Definition (Elliptic curve over C)

An algebraic curve in CP2 of genus one with one marked point.

Example (Weierstrass normal form)
In the chart z = 1:

y2 = 4x3 −g2x −g3

Example (Quartic form)
In the chart z = 1:

y2 = (x − x1)(x − x2)(x − x3)(x − x4)
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Riemann surfaces

One complex dimension corresponds to two real dimensions.

x

y

Weierstrass normal form
y2 = 4x3 −g2x −g3

Real Riemann surface of genus
one with one marked point
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Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable
z.
A period ψ of the function f is a constant such that for all z:

f (z +ψ) = f (z)

The set of all periods of f forms a lattice, which is either

trivial (i.e. the lattice consists of ψ = 0 only),

a simple lattice, Λ = {nψ | n ∈ Z},

a double lattice, Λ = {n1ψ1 +n2ψ2 | n1,n2 ∈ Z}.

Double periodic functions are called elliptic functions.
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Examples of periodic functions

Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ψ = 2πi .
Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1
z2 + ∑

ψ∈Λ\{0}

(
1

(z +ψ)2 − 1
ψ2

)
, Λ = {n1ψ1 +n2ψ2|n1,n2 ∈ Z} ,

Im(ψ2/ψ1) ̸= 0.

℘(z) is periodic with periods ψ1 and ψ2.
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Inverse functions

The corresponding inverse functions are in general multivalued functions.

For the exponential function x = exp(z) the inverse function is the
logarithm

z = ln(x) .

For Weierstrass’s elliptic function x =℘(z) the inverse function is an
elliptic integral

z =

∞∫
x

dt√
4t3 −g2t −g3

, g2 = 60 ∑
ψ∈Λ\{0}

1
ψ4 , g3 = 140 ∑

ψ∈Λ\{0}

1
ψ6 .
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Elliptic integrals

Complete elliptic integrals
First kind:

K (x) =

1∫
0

dt√
(1− t2)(1− x2t2)

Second kind:

E(x) =

1∫
0

dt

√
1− x2t2
√

1− t2

Third kind:

Π(v ,x) =

1∫
0

dt(
1− vt2

)√(
1− t2

)(
1− x2 t2

)

Incomplete elliptic integrals
First kind:

F (z,x) =

z∫
0

dt√
(1− t2)(1− x2t2)

Second kind:

E (z,x) =

z∫
0

dt

√
1− x2t2
√

1− t2

Third kind:

Π(v ,z,x) =

z∫
0

dt(
1− vt2

)√(
1− t2

)(
1− x2 t2

)
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Abelian differentials

Abelian differential of the first kind:
holomorphic

Abelian differential of the second kind:
meromorphic with all residues vanishing

Abelian differential of the third kind:
meromorphic with non-zero residues
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Periods of an elliptic curve

Integrate the holomorphic differential along the two independent cycles.

γ1
γ2
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Periods of an elliptic curve

Example
The Legendre form:

y2 = x (x −1)(x −λ)

The periods are

ψ1 = 2

λ∫
0

dx
y

= 4K
(√

λ
)

ψ2 = 2

λ∫
1

dx
y

= 4iK
(√

1−λ
)
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Picard-Fuchs operator

The elliptic curve y2 = x(x −1)(x −λ) depends on a parameter λ,
and so do the periods ψ1(λ) and ψ2(λ).

How do the periods change, if we change λ?

The variation is governed by a second-order differential equation:
With t =

√
λ we have[

t
(
1− t2) d2

dt2 +
(
1−3t2) d

dt
− t

]
︸ ︷︷ ︸

Picard-Fuchs operator

ψj = 0
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Representing an elliptic curve as C/Λ

Re z

Im z

ψ1

ψ2

Points inside fundamental parallelogram ⇔ Points on elliptic curve
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Back and forth

Weierstrass normal form → C/Λ:

Given a point (x ,y) with y2 −4x3 +g2x +g3 = 0 the corresponding point
z ∈ C/Λ is given by

z =

∞∫
x

dt√
4t3 −g2t −g3

C/Λ → Weierstrass normal form:

Given a point z ∈ C/Λ the corresponding point (x ,y) on
y2 −4x3 +g2x +g3 = 0 is given by

(x ,y) =
(
℘(z) ,℘′ (z)

)
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Notation

Convention: Normalise (ψ2,ψ1)→ (τ,1), where

τ =
ψ2

ψ1

and require Im(τ)> 0.

Definition (The complex upper half-plane)

H = {τ ∈ C|Im(τ)> 0}

Stefan Weinzierl Techniques for multi-loop computations NISER 2024 87 / 112



Modular transformations

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as
(ψ2,ψ1).

1

τ τ ′

Change of basis:

(
ψ′

2
ψ′

1

)
=

(
a b
c d

)(
ψ2

ψ1

)
,

Transformation should be invertible:

(
a b
c d

)
∈ SL2 (Z) ,

In terms of τ and τ′: τ′ =
aτ+b
cτ+d
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Modular forms

A meromorphic function f :H→ C is a modular form of modular weight k for
SL2(Z) if

1 f transforms under modular transformations as

f

(
aτ+b
cτ+d

)
= (cτ+d)k · f (τ) for γ =

(
a b
c d

)
∈ SL2(Z)

2 f is holomorphic on H,
3 f is holomorphic at i∞.

Define the |k γ operator by

(f |k γ)(τ) = (cτ+d)−k · f (γ(τ))
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Congruence subgroups

Apart from SL2(Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}
Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}
Modular forms for congruence subgroups: Require “nice” transformation
properties only for subgroup Γ (plus holomorphicity on H and at the cusps).
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Modular forms

For a congruence subgroup Γ of SL2(Z) denote by Mk(Γ) the space of
modular forms of weight k .
We have the inclusions

Mk(SL2(Z))⊆ Mk(Γ0(N))⊆ Mk(Γ1(N))⊆ Mk(Γ(N))

For f ∈ Mk(Γ(N)):

f |k γ = f , γ ∈ Γ(N)

f |k γ ∈ Mk(Γ(N)), γ ∈ SL2(Z)\Γ(N)
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Notation

For τ ∈H and z ∈ C set

q̄ = exp(2πiτ) , w̄ = exp(2πiz)

Maps the complex upper half-plane τ ∈H to the unit disk |q̄|< 1.

Trivialises periodicity with period 1:

q̄ (τ+1) = q̄ (τ) , w̄ (z +1) = w̄ (z)

Shifts with τ correspond to multiplication with q̄:

q̄ (τ+ τ) = q̄ (τ) · q̄ (τ) , w̄ (z + τ) = w̄ (z) · q̄ (τ)
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Iterated integrals of modular forms

Let f1, . . . , fn be modular forms.

I (f1, f2, ..., fn;q) = (2πi)n
τ∫

τ0

dτ1f1 (τ1)

τ1∫
τ0

dτ2f2 (τ2) ...

τn−1∫
τ0

dτnfn (τn)

As basepoint we usually take τ0 = i∞.

An integral over a modular form is in general not a modular form.

Analogy: An integral over a rational function is in general not a rational
function.
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Simple poles at τ = i∞

A modular form fk(τ) is by definition holomorphic at the cusp and has a
q̄-expansion

fk(τ) = a0 +a1q̄+a2q̄2 + ..., q̄ = exp(2πiτ)

The transformation q̄ = exp(2πiτ) transforms the point τ = i∞ to q̄ = 0 and we
have

2πi fk(τ)dτ =
dq̄
q̄

(
a0 +a1q̄+a2q̄2 + ...

)
.

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at
q̄ = 0.
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Subsection 2

Moduli spaces
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Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves
of genus g with n marked points.

complex curve
z1

z2
z3⇔

z1

z2

z3

z1

z2
z3⇔z2

z1

z3

real surface
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Coordinates

Genus 0: dimM0,n = n−3.
Sphere has a unique shape
Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0
Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.
One coordinate describes the shape of the torus
Use translation to fix zn = 0
Coordinates are (τ,z1, ...,zn−1)
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Iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path,
write for the pull-back of ωj to the interval [0,1]

fj (λ)dλ = γ∗ωj .

The iterated integral is defined by

Iγ (ω1, ...,ωk ;λ) =

λ∫
0

dλ1f1 (λ1)

λ1∫
0

dλ2f2 (λ2) ...

λk−1∫
0

dλk fk (λk) .
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Iterated integrals on M0,n

We are interested in differential one-forms, which have only simple poles:

ωmpl (zj) =
dy

y − zj
.

Multiple polylogarithms:

G(z1, ...,zk ;y) =

y∫
0

dy1

y1 − z1

y1∫
0

dy2

y2 − z2
...

yk−1∫
0

dyk

yk − zk
, zk ̸= 0
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Iterated integrals on M1,n

Coordinates are (τ,z1, ...,zn−1)

Decompose an arbitrary path along dτ and dzj

Two classes of iterated integrals:
1 Integration along z
2 Integration along τ

What are the differential one-forms we want to integrate?
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The Kronecker function

The first Jacobi theta function θ1(z,q):

θ1 (z,q) = −i
∞

∑
n=−∞

(−1)n q(n+ 1
2)

2

ei(2n+1)z , q = eiπτ

The Kronecker function F(z,α,τ):

F (z,α,τ) = πθ′
1 (0,q)

θ1 (π(z +α) ,q)
θ1 (πz,q)θ1 (πα,q)

=
1
α

∞

∑
k=0

g(k) (z,τ)αk

We are mainly interested in the coefficients g(k)(z,τ) of the Kronecker
function.
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The coefficients g(k)(z,τ) of the Kronecker function

Properties of g(k)(z,τ):
1 only simple poles as a function of z
2 quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ.

g(k) (z +1,τ) = g(k) (z,τ) ,

g(k) (z + τ,τ) =
k

∑
j=0

(−2πi)j

j!
g(k−j) (z,τ)

3 almost modular:

g(k)
(

z
cτ+d

,
aτ+b
cτ+d

)
= (cτ+d)k

k

∑
j=0

(2πi)j

j!

(
cz

cτ+d

)j

g(k−j) (z,τ)
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Differential one-forms on M1,n

To keep the discussion simple, we start with M1,2 with coordinates (τ,z):
One-forms from modular forms:

ωmodular
k = 2πi fk (τ)dτ

One-forms from the Kronecker function:

ωKronecker
k = (2πi)2−k

[
g(k−1) (z − cj ,τ)dz +(k −1)g(k) (z − cj ,τ)

dτ
2πi

]
with cj being a constant.

We allow the substitution τ → K τ with K ∈ N.

On M1,n with coordinates (τ,z1, ...,zn−1) we consider z → zj with
1 ≤ j ≤ (n−1).
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Iterated integrals on M1,n: Integration along z

Differential one-forms:

ωKronecker,z
k (zj ,τ) = (2πi)2−k g(k−1) (z − zj ,τ)dz

Elliptic multiple polylogarithms:

Γ̃
(n1 ... nr

z1 ... zr ;z;τ
)

= (2πi)n1+···+nr−r I
(

ωKronecker,z
n1+1 (z1,τ) , . . . ,ωKronecker,z

nr+1 (zr ,τ) ;z
)

τ = const

meromorphic version, only simple poles in z

not double periodic!
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Iterated integrals on M1,n: Integration along τ

Differential one-forms:

ωKronecker,τ
k (zj) = (2πi)2−k (k −1)g(k) (zj ,τ)

dτ
2πi

=
(k −1)

(2πi)k g(k) (zj ,τ)
dq̄
q̄

Integrate in q̄

No poles in 0 < |q̄|< 1.

Possibly a simple pole at q̄ = 0 (“trailing zero”)
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Subsection 3

Physics
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The equal-mass sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of
variables and/or a rational/algebraic transformation of the basis of master
integrals.
However by factoring off the (non-algebraic) expression ψ1/π from the
master integrals in the sunrise sector one obtains an ε-form:

I1 = 4ε2I110 (2−2ε,x) I2 =−ε2 π
ψ1

I111 (2−2ε,x) I3 =
1
ε

1
2πi

d
dτ

I2 +
1
24

(
3x2 −10x −9

) ψ2
1

π2 I2

If in addition one makes a (non-algebraic) change of variables from x to τ,
one obtains

d
dτ

I = ε A(τ) I,

where A(τ) is an ε-independent 3×3-matrix whose entries are modular
forms.
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The unequal-mass sunrise

After a redefinition of the basis of master integrals and a change of
coordiantes from (x ,y1,y2) = (p2/m2

3,m
2
1/m2

3,m
2
2/m2

3) to (τ,z1,z2) one finds

A = ε
NL

∑
j=1

Cj ωj,

where ωj is either

2πi fk (τ)dτ,

where fk(τ) is a modular form, or of the form

ωk (zi ,K τ) = (2πi)2−k
[

g(k−1) (zi ,K τ)dzi +K (k −1)g(k) (zi ,K τ)
dτ
2πi

]
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q̄-expansions

Iterated integrals in the elliptic case are evaluated
with the help of their q̄-expansions, q̄ = exp(2πiτ).
The q̄-series converge for |q̄|< 1.

By a modular transformation we may map τ to the
fundamental domain, resulting in

|q̄| ≤ e−π
√

3 ≈ 0.0043,

resulting in a fast converging series.
Re τ

Im τ

1
2

1−1
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q̄-expansions

Consider the equal mass sunrise
integral with x =−p2/m2.

Singularites at
x ∈ {−9,−1,0,∞}.

In the variable x we don’t expect
an expansion around one singular
point to converge beyond the next
singular point.

In the variable q̄ the expansion
converges for all values x ∈ R
except the three other singular
points.

p

m

m

m

Re(p2)

Im(p2)

m2 9m2

x ∈ [0,∞[
x ∈ [−1 : 0]

x ∈ [−9 : −1]
x ∈]−∞,−9]

Re(q̄)

Im
(q̄
)

10.50−0.5−1

1

0.5

0

−0.5

−1
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Numerics

Physics is about numbers:

Iterated integrals of modular forms and elliptic multiple polylogarithms can
be evaluated numerically with arbitrary precision.

Implemented in GiNaC.
Walden, S.W, ’20

ginsh - GiNaC Interactive Shell (GiNaC V1.8.1)
__, _______ Copyright (C) 1999-2021 Johannes Gutenberg University Mainz,

(__) * | Germany. This is free software with ABSOLUTELY NO WARRANTY.
._) i N a C | You are welcome to redistribute it under certain conditions.

<-------------’ For details type ‘warranty;’.

Type ?? for a list of help topics.
> Digits=50;
50
> iterated_integral({Eisenstein_kernel(3,6,-3,1,1,2)},0.1);
0.23675657575197179243274817775862177623438999192840338805367
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Generalisations

We understand by now very well Feynman integrals related to algebraic
curves of genus 0 and 1. These correspond to iterated integrals on the
moduli spaces M0,n and M1,n.

The obvious generalisation is the generalisation to algebraic curves of
higher genus g, i.e. iterated integrals on the moduli spaces Mg,n.

However, we also need the generalisation from curves to surfaces and
higher dimensional objects: The geometry of the banana graphs with
equal non-vanishing internal masses

are Calabi-Yau manifolds.
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